网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于液压胀形实验及增量理论构建管材本构关系
英文标题:Determination of constitutive relationship of tubular materials based on incremental theory and hydraulic bulge test
作者:王宁华 杨连发 
单位:桂林电子科技大学 
关键词:管材液压成形 本构关系 增量理论 
分类号:TG301
出版年,卷(期):页码:2015,40(2):133-137
摘要:
为了准确构建管材本构关系,提出一种新的依据管材液压胀形实验数据、运用增量理论构建管材本构关系的方法。通过采用三维应变测量分析系统在线实时测量管材胀形实验中胀形区的三维位移场,并通过计算获得三维应变场、壁厚减薄等,避免了对管材胀形轮廓形状的预先假设。为了验证提出方法的可靠性,将运用增量理论、全量理论及单向拉伸实验确定的管材材料参数分别用于管材液压胀形实验的有限元模拟,并将模拟得到的管材的最大胀形高度、胀形轮廓形状与实验结果进行对比。结果显示,基于增量理论法获得各项结果的偏差均最小,在6.7%范围以内,故基于增量理论的方法能更准确地预测管材材料的本构关系。
 
 In order to determine constitutive relationship of tubular materials accurately, a novel approach was proposed by means of the incremental theory based on the data of tube hydraulic bulge test. The three-dimensional displacement field of the bulging zone was measured on-line and real-time via three-dimensional strain measurement system in the test, and then the strain field and wall thickness thinning were obtained through the calculation. Thus, the pre-assumption of bulged profiles was avoided. Finite element simulations of tube hydraulic bulge with the material parameters which were determined by increment theory, total strain theory and uniaxial tensile test respectively, were performed to obtain the maximum bulge height and bulge profiles, and they were compared with those obtained by the test to verify the reliability of the proposed approach. The results show that the deviations of those results obtained by means of incremental theory are the smallest, which are in a range of less than 6.7%. That is to say, the approach by means of the incremental theory can predict the constitutive relationship of tubular material more precisely.
 

 

基金项目:
国家自然科学基金资助项目(51271062);广西自然科学基金资助项目(2013GXNSFAA019305);制造系统与先进制造技术广西重点实验室开放基金项目(14-045-15-005Z)
作者简介:
王宁华(1988-),女,硕士研究生 杨连发(1965-),男,博士,教授
参考文献:


[1]王芳,王忠堂. 基于管材挤压实验的ZK60镁合金本构关系模型[J]. 锻压技术, 2013, 38(6):142-145.Wang F, Wang Z T. Constitutive model of ZK60 magnesium alloy based on tube extrusion test[J]. Forging & Stamping Technology, 2013, 38 (6): 142-145.
[2]刘建伟,刘心宇,杨连发,等. 基于数字散斑相关法的管材胀形轮廓方程的构建[J]. 锻压技术, 2014, 39(4):31-35.Liu J W, Liu X Y, Yang L F, et al. Constructing curvilinear equation of bulging profile for tube based on digital speckle correlation method[J]. Forging & Stamping Technology, 2014, 39(4):31-35.
[3]Bortot P, Ceretti E, Giardini C. The determination of flow stress of tubular material for hydroforming applications[J]. Journal of Materials Processing Technology, 2008, 203:318-388.
[4]Strano M, Altan T. An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications[J]. Journal of Materials Processing Technology, 2004, 146:92-96.
[5]Boudeau N, Malécot P. A simplified analytical model for post-processing experimental results from tube bulging test: Theory, experimentations, simulations[J]. International Journal of Mechanical Sciences, 2012, 65:1-11.
[6]Yang L F, Guo C. Determination of stress-strain relationship of tubular material with hydraulic bulge test[J]. Thin-Walled Structure, 2008, 46(2):147-154.
[7]Xu Y, Chan L C, Tsien Y C, et al. Prediction of work-hardening coefficient and exponential by adaptive inverse finite element method for tubular material[J]. Journal of Materials Processing Technology, 2008, 201:413-418.
[8]Zribi T, Khalfallah A, BelHadjSalah H. Experimental characterization and inverse constitutive parameters identification of tubular materials for tube hydroforming process[J]. Materials and Design, 2013, 49:866-877.
[9]唐炳涛,鹿晓阳. 基于塑性流动本构关系的多步反向模拟法[J]. 机械工程学报, 2011, 47(4):47-52.Tang B T, Lu X Y. Novel multi-step inverse finite element method based on constitutive equations of plastic flow in sheet metal forming[J]. Journal of Mechanical Engineering, 2011, 47(4):47-52.
[10]俞汉清,陈金德.金属塑性成形原理[M]. 北京:机械工业出版社, 2004.Yu H Q, Chen J D. Metal Plasticity Forming Theory[M]. Beijing: China Machine Press, 2004.
[11]Liu J W, Liu X Y, Yang L F, et al. Determination of flow stress of thin-walled tube based on digital speckle correlation method for hydroforming applications[J]. International Journal of Advanced Manufacturing Technology, 2013, 69:439-450.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9