网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车翼子板拉深成形模拟及工艺参数优化
英文标题:Simulation and parameters optimization of deep drawing for automobile fender
作者:马国英 黄彬兵 苏春建 殷菲菲 李朋朋 
单位:山东科技大学 清华大学 
关键词:汽车翼子板 数值模拟 正交试验 减薄率 变厚率 
分类号:TG386.1
出版年,卷(期):页码:2015,40(3):21-24
摘要:

以汽车翼子板为研究对象,采用有限元分析软件Dynaform对其拉深成形过程进行了模拟。针对拉深成形过程中出现的破裂和起皱等缺陷,选取压边力、冲压速度、板料厚度、摩擦系数4个重要成形工艺参数进行正交试验及参数优化,模拟结果表明,最优拉深成形工艺方案为:压边力1600 kN、冲压速度3000 mm·s-1、板料厚度1.0 mm和摩擦系数0.10,得到零件的最大变薄率为27.7%,最大变厚率为8.5%。采用优化工艺方案进行汽车翼子板拉深试模,成形件质量较好,经检测零件最小壁厚0.728 mm,最大壁厚1.08 mm,试模结果与有限元模拟结果基本一致。

The deep drawing process of the automobile fender was simulated by finite element analysis software of Dynaform. For the defects such as wrinkles and cracks produced in deep drawing process, the orthogonal experiment and parameter optimization were carried out, while blank holder force, punching speed, sheet thickness and friction coefficient were chosen as process parameters. The simulation results show that the optimal deep drawing process parameters are blank holder force of 1600 kN, punching speed of 3000 mm·s-1, sheet thickness of 1.0 mm and friction coefficient of 0.10 with the max thinning rate of 27.7% and the max thickening rate of 8.5%. The automobile fender drawing test was conducted by optimized process, and the forming quality is better with the wall thickness within 0.728-1.08 mm. The test results are basilally consistent with that of finite element simulation.
 

基金项目:
国家自然科学基金资助项目(51305241);山东省高等学校科研计划项目(J12LA03)
作者简介:
马国英(1987-),女,硕士研究生
参考文献:


[1]简晓春, 王笑. 正面和偏置碰撞的耐撞性仿真与车身结构改进[J]. 汽车安全与节能学报, 2011, 2(3): 212-216.Jian X C, Wang X. Simulation of crashworthiness during front impact and offset impact and vehicle body structure improvement[J]. Journal of Automotive Safety and Energy, 2011, 2(3): 212-216.
[2]刘驰. 翼子板冲压工艺及成形分析[J]. 锻压技术, 2014, 39(4): 20-24.Liu C. Stamping process and forming analysis of fender [J]. Forging & Stamping Technology, 2014, 39(4): 20-24.
[3]白凤梅, 金玉兰, 王小林, 等. 翼子板拉深成形模拟及模具结构优化[J]. 锻压技术, 2009, 34(3): 140-143.Bai F M, Jin Y L, Wang X L, et al. Draw forming simulation and die structure optimization of front fender[J]. Forging & Stamping Technology, 2009, 34(3): 140-143.
[4]王志明, 周璇. 基于虚拟试模的汽车翼子板成形回弹控制研究[J]. 热加工工艺, 2012, 41(5): 75-77.Wang Z M, Zhou X. Study on springback control of automobile front fender based on virtual drawing [J]. Hot Working Technology, 2012, 41(5): 75-77.
[5]周云山, 贾杰锋. 基于正交试验设计和多目标遗传算法的HEV参数优化[J]. 汽车安全与节能学报, 2014, 5(4): 324-330.Zhou Y S, Jia J F. Parameters optimization of hybrid electric vehicle based on orthogonal experimental design and multi-objective genetic algorithm [J]. Journal of Automotive Safety and Energy, 2014, 5(4): 324-330.
[6]苏春建,于涛. 金属板材成形CAE分析及应用—Dynaform工程应用[M]. 北京:国防工业出版社, 2011.Su C J, Yu T. Sheet Metal Forming Analysis and Application of CAE-Dynaform Project Application[M]. Beijing: National Defence Industry Press, 2011.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9