网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
AZ31镁合金电池筒反挤压工艺仿真研究
英文标题:Numerical study of backward extrusion process for AZ31 magnesium alloy battery cylinder
作者:孙颖迪 陈秋荣 
单位:中国科学院 上海微系统与信息技术研究所 
关键词:AZ31镁合金  反挤压  数值模拟  电池筒 
分类号:TG379
出版年,卷(期):页码:2015,40(3):46-52
摘要:

基于Deform-3D与AZ31镁合金材料模型对1号镁合金电池筒的反挤压成形过程进行数值模拟,完成模具设计及各工艺参数下反挤压成形过程的对比优化。结果表明:在相同挤压速度下,随挤压温度升高,等效应力峰值不断降低,等效应变峰值不断升高,温度场向高温区推进,并在280 ℃时,损伤值降至最低,说明在该温度下AZ31镁合金反挤压过程的破损率最小;另外,在280 ℃下,随着挤压速度的提高,等效应力场峰值不断减小,等效应变场峰值增大,温度场峰值向高温区推进,并在12 mm·s-1的挤压速度下达到损伤极值最小值。根据优化工艺进行反挤压成形试验验证,生产出了合格的产,品且筒壁组织均匀细化。

The backward extrusion process of No.1 magnesium alloy battery cylinder was simulated by Deform-3D software based on the model of AZ31 magnesium alloys. The die structure was designed and the backward extrusion process with different parameters was compared and optimized. The results show that with the same extrusion speed, the equivalent stress peak reduces continually and equivalent strain peak increases continually with the increasing extrusion temperature. When the temperature field moves to high temperature region, the damage value decreases to the minimum at 280 ℃, namely, the damage rate of the backward extrusion process for AZ31 magnesium alloys reduces to the minimum. In addition, at this temperature, the equivalent stress peak reduces continually and equivalent strain peak increases continually with the increasing extrusion speed. When the peak of temperature field moves to high temperature region, the damage value reduces to the minimum at the extrusion speed of 12 mm·s-1. The test of the backward extrusion was carried out by the optimized process. The qualified products were produced, and the microstructure of cylinder sidewall was uniform.
 

基金项目:
嘉兴市重大科技专项镁合金板型材加工技术研究及产业化(2010AZ2001)
作者简介:
孙颖迪(1983-),女,博士,助理研究员
参考文献:


[1]Stráská J, Janecˇek M, Cˇíek J, et al. Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX-ECAP) [J]. Materials Characterization, 2014, 94: 69-79.
[2]Herrera-Solaz V, Llorca J, Dogan E, et al. An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: Application to AZ31 Mg alloy [J]. International Journal of Plasticity, 2014, 57: 1-15.
[3]Olguín-Gonzá M L, Hernández-Silva D, García-Bernal M A, et al. Hot deformation behavior of hot-rolled AZ31 and AZ61 magnesium alloys [J]. Materials Science and Engineering A, 2014,597: 82-88.
[4]Chen H, Zhao G Q, Zhang C S, et al. Numerical simulation of extrusion process and die structure optimization for a complex aluminum multicavity wallboard of high-speed train[J]. Materials and Manufacturing Processes, 2011, 26(12): 1530-1538.
[5]Zhang C S, Zhao G Q, Chen Z R, et al. Effect of extrusion stem speed on extrusion process for a hollow aluminum profile[J]. Materials Science and Engineering B, 2012, 177(19): 1691-1697.
[6]Guan Y J, Zhang C S, Zhao G Q, et al. Design of a multihole porthole die for aluminum tube extrusion[J]. Materials and Manufacturing Processes, 2012, 27(2): 147-153.
[7]Li L, Zhang H, Zhou J, et al. Numerical and experimental study on the extrusion through a porthole die to produce a hollow magnesium profile with longitudinal weld seams [J]. Materials and Design, 2008, 29(6): 1190-1198.
[8]Kumar S, Vijay P. Die design and experiments for shaped extrusion under cold and hot condition [J]. Journal of Materials Processing Technology, 2007, 190(1-3): 375-381.
[9]王芳, 王忠堂. 基于管材挤压实验的ZK60镁合金本构关系模型[J]. 锻压技术, 2013, 38(6): 142-145.Wang F, Wang Z T. Constitutive model of ZK60 Magnesium alloy based on the extrusion test [J]. Forging & Stamping Technology, 2013, 38(6): 142-145. 
[10]曹乃光. 金属塑性加工原理[M]. 北京: 冶金工业出版社, 1983.Cao N G. Principle of Plastic Deformation in Metals Processing[M]. Beijing: Metallurgical Industry Press, 1983.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9