网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
1420铝锂合金电致超塑性本构方程
英文标题:Constitutive equation of electro-superplastic for 1420 Al-Li alloy
作者:张宁 张艳苓 毕静 侯红亮 
单位:北京航空制造工程研究所 
关键词:1420铝锂合金 电致超塑性 本构方程 脉冲电流 
分类号:TG146.2+1
出版年,卷(期):页码:2015,40(5):63-68
摘要:
变形温度为480 ℃时,对1420铝锂合金进行了不同应变速率、脉冲电流密度和脉冲频率的电致超塑性拉伸试验;通过对现有超塑性本构方程进行修正,建立了耦合脉冲电流密度和脉冲频率的超塑性本构方程,并对其进行了试验验证。研究结果表明:变形温度为480 ℃、应变速率为0.001 s-1时,在1420铝锂合金的超塑性拉伸试验中施加脉冲电流后,材料的流动应力比未施加电流时有所降低,伸长率有所增加;当脉冲电流密度为192 A·mm-2、脉冲频率为150 Hz时,材料的流动应力最小,伸长率最大。通过耦合脉冲电流参数的本构方程计算的流动应力值与试验数据吻合较好,能够准确预测1420铝锂合金在电致超塑性变形中流动应力的变化趋势。
The uniaxial tensile tests of electro-superplastic for 1420 Al-Li alloy were carried out with different parameters of strain rate, pulse current density and pulse frequency at the deformation temperature of 480 ℃. Through revising the current constitutive equations of superplastic, the constitutive equation of electro-superplastic for 1420 Al-Li alloy coupling with pulse current density and pulse frequency was established, and then the constitutive equation was validated by experimental data. The results show that, when the deformation temperature is 480 ℃ and the strain rate is 0.001 s-1, the flow stress of alloy with uniaxial superplastic tensile tests of  being added pulse current density is slightly lower than that without being added pulse current density, and the elongation of alloy increases a little. Meanwhile, when pulse current density is 192 A·mm-2 and the pulse frequency is 150 Hz, the minimum flow stress and the maximum elongation of alloy are obtained. And the flow stress calculated by the constitutive equation coupling with pulse current parameters is close to the experimental data, and the change trend of flow stress during electro-superplastic forming for 1420 Al-Li alloy can be predicted accurately.
基金项目:
国家自然科学基金资助项目(51334006,51405457);国家重点基础研究发展计划资助项目(2011CB012803)
作者简介:
张宁(1985-),女,博士,工程师 侯红亮(1963-),男,博士,研究员
参考文献:


[1]Dejong H F. A survey of the development, properties and application of aluminum-lithium alloys [J]. Aluminum, 1984, 60(9): 673- 679.
[2]Sheppard T, Parson N C. Corrosion resistance of Al-Li alloys[J]. Materials Science and Technology, 1987, 3(5): 345-352.
[3]尹登峰,郑子樵. 铝锂合金研究开发的历史与现状[J]. 材料导报,2003,17(2):18-20.Yin D F, Zheng Z Q. History and current status of Aluminum-Lithium alloys research and development[J]. Materials Review, 2003, 17(2): 18-20.
[4]张蕾,祝铭亮,黄正. 双级时效对1420 铝锂合金模锻材料组织和性能的影响[J]. 轻合金加工技术,2003,31(6):36-39.Zhang L, Zhu M L, Huang Z. Effects of double ageing on microstructures and properties of 1420 alloy[J]. Light Alloy Fabrication Technology, 2003,31(6): 36-39.
[5]张新明,罗志辉,杜予晅,等. 双级时效对1420铝锂合金超塑性的影响[J]. 材料热处理学报,2007,28(4):55-58.Zhang X M,Luo Z H, Du Y H, et al. Effect of two-stage ageing on superplasticity of 1420 Al-Li alloy[J]. Transactions of Materials and Heat Treatment, 2007, 28(4):55-58.
[6]吴瑶,许晓静,张振强,等. 预回复退火2099铝锂合金挤压材的组织和位错强化[J]. 稀有金属,2015,39(2):187-192.Wu Y, Xu X J, Zhang Z Q, et al. Microstructure and dislocation strengthening of pre-recovery-anneal 2099 Al-Li alloy extrusions[J]. Chinese Journal of Rare Metals, 2015, 39(2): 187-192.
[7]Park J W, Kim J W, Chung Y H. Grain refinement of steel plate by continuous equal-channel angular process[J]. Scripta Materialia, 2004, 51(2):181-184.
[8]王晓亮,盖鹏涛. 1420铝锂合金典型构件超塑成形研究[J]. 航空制造技术,2012,(21):85-89.Wang X L, Gai P T. Study on superplastic forming of typical structure of 1420 Al-Li alloy[J]. Aeronautical Manufacturing Technology, 2012,(21): 85-89.
[9]席兵,巨建辉,王静,等. TA15钛合金超塑性变形时的组织演变[J]. 稀有金属,2014,38(2):328-333.Xi B, Ju J H, Wang J, et al. Microstructure evolution of TA15 alloy during superplastic deformation[J]. Chinese Journal of Rare Metals, 2014, 38(2): 328-333.
[10]李超,张凯峰,蒋少松. Ti-6Al-4V合金双半球结构脉冲电流辅助超塑成形[J]. 稀有金属材料与工程,2012,41(8):1400-1404.Li C, Zhang K F, Jiang S S. Pulse current auxiliary superplastic forming of Ti-6Al-4V alloy double hemisphere structure [J]. Rare Metal Materials and Engineering, 2012, 41(8): 1400-1404.
[11]董晓华,李尧. 金属的电致塑性和电致超塑性效应[J]. 湖北工学院学报,1996,11(4):1-6.Dong X H, Li Y. On the electro plastic and electro superplastic effect of metals[J]. Journal of Hubei Polytechnic University, 1996, 11(4): 1-6.
[12]刘锦溪,陆燕玲,李肖科,等. C276合金高温拉伸变形的本构方程[J]. 塑性工程学报,2012,19(5):11-15.Liu J X, Lu Y L, Li X K, et al. Constitutive equation of hot tensile deformation for C276 superalloy[J]. Journal of Plasticity Engineering, 2012, 19(5): 11-15.
[13]赵达,董湘怀,谢焕阳,等. AZ31镁合金电塑性流动应力模型[J]. 模具技术,2013,(3):7-12.Zhao D, Dong X H, Xie H Y, et al. AZ31 magnesium alloy electro-plastic flow stress model[J]. Die and Mould Technology, 2013, (3): 7-12.
[14]李尧,彭书华,杨俊杰. 电致塑性效应对纯钽的流动应力影响[J]. 稀有金属,2014,38(6):973-977.Li Y, Peng S H, Yang J J. Analysis of electro-plastic effect on flow stress of pure tantalum [J]. Chinese Journal of Rare Metals, 2014, 38(6): 973-977.
[15]刘泾源. Ti750高温钛合金超塑成形性能及组织演变研究[D]. 哈尔滨:哈尔滨工业大学,2011.Liu J Y. Superplastic Formability and Microstructure Evolution of Ti750 High Temperature Titanium Alloy[D]. Harbin:Harbin Institute of Technology, 2011.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9