网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC4合金高温拉伸变形力学行为与微观组织演变关联研究
英文标题:Study on the correlation of flow behavior and microstructure evolution during the high temperature tensile deformation of TC4 alloy
作者:李波  张沛 
单位:中航工业第一飞机设计研究院 
关键词:TC4合金 流动应力 应变速率敏感性指数 应变硬化指数 微观组织演变 
分类号:TG319
出版年,卷(期):页码:2015,40(6):108-115
摘要:

基于TC4合金高温恒应变速率拉伸试验和微观组织观察,研究了工艺参数对TC4合金流动应力、应变速率敏感性指数、应变硬化指数和微观组织演变的影响规律,获得了TC4合金高温拉伸变形时宏观力学行为与微观组织演变的关联机制。结果表明:当变形温度为1123~1213 K、应变速率为0.1 s-1时,TC4合金的拉伸应变不超过0.7就会出现局部颈缩并导致开裂;当应变速率为0.01 s-1、变形温度为1183 K时,TC4合金的应变速率敏感性指数m值最大,归因于该变形条件下初生α相呈等轴状且较细小;当应变速率为0.01 s-1时,随着应变增加,应变硬化指数n值呈逐渐减小的趋势,归因于加工硬化和动态软化的共同作用;随着变形温度升高,初生α相由长条状转变为等轴状,随着应变速率增加,初生α相呈现出明显的取向性,不利于晶界滑动或旋转;应变对初始α相形貌和含量影响较小,但对次生α相影响显著。

The influences of processing parameters on flow stress, strain rate sensitivity exponent, strain hardening exponent and microstructure evolution were investigated based on high temperature tensile test under the constant strain rate and microstructure examination of titanium alloy TC4, and the correlation of flow behavior and microstructure evolution was obtained. The results show that the local necking will appear and lead to crack at deformation temperatures 1123-1213 K, strain rate 0.1 s-1 and the strain within 0.7, and the maximum m value occurs at deformation temperature 1183 K and strain rate 0.01 s-1 because the microstructure of primary α  phase is fine and equiaxed grain. However, the strain hardening exponent decreases with the increase of strain at strain rate 0.01 s-1 due to the combination with work hardening and thermal softening. The morph of primary α  phase changes from strip to equiaxed grain with the increase of deformation temperature, and it is of slight oriented characteristic with the increase of strain rate, which is not beneficial for the grain boundary sliding and rotation. The influence of strain on the morph and volume fraction of primary α  phase is less, but it is significant for secondary α  phase.

基金项目:
作者简介:
李波(1981-),女,硕士,工程师
参考文献:


[1]Vo P,Jahazi M,Yue S,et al. Flow stress prediction during hot working of near-α titanium alloys[J]. Materials Science and Engineering A,2007,447(1/2): 99-110.
[2]Warchomicka F,Stockinger M,Degischer H P. Quantitative analysis of the microstructure of near β titanium alloy during compression tests[J]. Journal of Materials Processing Technology,2006,177(1/3): 473-477.
[3]Wang T,Guo H Z,Wang Y W,et al. Influence of processing parameters on microstructure and tensile properties of TG6 titanium alloy[J]. Materials Science and Engineering A,2010,528(2): 736-744.
[4]Sun S D,Zong Y Y,Shan D B,et al. Hot deformation behavior and microstructure evolution of TC4 titanium alloy[J]. Transactions of Nonferrous Metals Society of China,2010,20(11): 2181-2184.
[5]Gao P F,Yang H,Fan X G. Quantitative analysis of the microstructure of transitional region under multi-heat isothermal local loading forming of TA15 titanium alloy[J]. Materials and Design,2011,32(4): 2012-2020.
[6]徐峰,黄爱军,李阁平,等. 热工艺对TC6钛合金显微组织的影响[J]. 金属学报,2002,38(z): 174-177.Xu F,Tian A J,Li G P,et al. Effect of heat treatment on microstructure of TC6 alloy[J].Acta Metallurgica Sinica,2002,38(z): 174-177.
[7]田宇兴,李述军,郝玉琳,等. Ti2448合金高温变形行为及组织演变机制的转变[J]. 金属学报,2012,48(7): 837-844.Tian Y X,Li S J,Hao Y L,et al. High Temperature deformation behacvior and microstructure evolution mechanism transformation in Ti2448 alloy[J]. Acta Metallurgica Sinica,2012,48(7): 837-844.
[8]宫旭辉,王宇,夏源明,等. TC21钛合金的高温动态拉伸力学行为[J]. 中国有色金属学报,2010,20(4): 647-654.Gong X H,Wang Y,Xia Y M,et al. Dynamic tensile behavior of TC21 titanium alloys at elevated temperatures[J]. The Chinese Journal of Nonferrous Metals,2010,20(4): 647-654.
[9]Semiatin S L,Seetharaman V,Weiss I. Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure[J]. Materials Science and Engineering A,1999,263(2): 257-271.
[10]Semiatin S L,Bieler T R. The effect of alpha platelet thickness of plastic flow during hot working of Ti-6Al-4V with a transformed microstructure[J]. Acta Materialia,2001,49(17): 3565-3573.
[11]Singh N,Singh V. Effect of temperature on tensile properties of near-α alloy Timetal 834[J]. Materials Science and Engineering A,2008,485(1/2): 130-139.
[12]Tsao L C,Wu H Y,Leong J C,et al. Flow stress behavior of commercial pure titanium sheet during warm tensile deformation[J]. Materials and Design,2012,34: 179-184.
[13]Luo J,Li M Q,Yu W X,et al. The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti-6Al-4V alloy[J]. Materials and Design,2010,31(2): 741-748.
[14]Luo J,Li M Q. Strain rate sensitivity and strain hardening exponent during the isothermal compression of Ti60 alloy[J]. Materials Science and Engineering A,2012,538: 156-163.
[15]李鑫,鲁世强,王克鲁,等. 变形温度对TC11钛合金超塑性的影响[J]. 稀有金属材料与工程,2009,38(11): 1920-1923.Li X,Lu S Q,Wang K L,et al. Effect of deformation temperature on superplastic of TC11 titanium alloy[J]. Rare Metal Materials and Engineering,2009,38(11): 1920-1923.
[16]郭鸿镇,张维,赵张龙,等. TC21新型钛合金的超塑性拉伸行为及组织演化[J]. 稀有金属材料与工程,2005,34(12): 1935-1939.Guo H Z,Zhang W,Zhao Z L,et al. New TC21 titanium alloy superplastic tensile behavior and microstructure evolution[J]. Rare Metal Materials and Engineering,2005,34(12): 1935-1939.
[17]Backfen W A,Turner I R,Avery D H. Superplasticity in an Al-Zn alloy[J]. ASM Transactions Quarterly,1964,57: 980-990.
[18]Holloman J H. Tensile deformation[J]. Transactions of the Metallurgical Society of AIME,1945,162: 268-290.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9