网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ti55531合金热压缩模拟研究
英文标题:Study on the simulation of hot compressing for titanium alloy Ti55531
作者:李志燕 郑为为 沙爱学 魏学业 
单位:北京航空材料研究院 北京科技大学 
关键词:Ti55531钛合金 热压缩 应力 激活能 
分类号:TG456.3
出版年,卷(期):页码:2015,40(6):121-125
摘要:

在Gleeble-1500热模拟试验机上,当应变速率为0.001~10 s-1、变形温度为700~900 ℃时,采用高温压缩试验对Ti-55531钛合金热压缩变形中流变应力行为进行研究。研究结果表明, 两相区变形时,曲线呈动态再结晶型,单相区变形时,曲线呈动态回复型。流变应力随着变形温度的升高而降低,随应变速率的提高而增大。采用双曲正弦模型确定该合金的变形激活能,两相区变形激活能为407.75 kJ·mol-1,单相区变形的形变激活能为157.97 kJ·mol-1,建立了两相区和单相区变形的本构方程。误差分析表明,流动应力计算值与试验值之间的相对误差小于10%,所建立的本构关系能比较精确地描述Ti-55531钛合金热加工过程中的流动行为。

The flow stress behavior of titanium alloy Ti55531 during hot compression deformation was studied by high temperature compression test at the deformation temperature 700-900 ℃ and the strain rate 0.001-10 s-1 on the Gleeble-1500 press. The results show that the curve at (α+β)phase is of re-crystallization, while the curve at β phase is of dynamic recovery. The flow stress decreases with the increase of deformation temperature but increases with the increasing strain rate. Its deformation activation energy is determined by the Hyperbolic sine model, namely, 407.75 kJ·mol-1 on(α+β)phase and 157.97 kJ·mol-1 on β phase, and the constitutive equations at(α+β)phase were β phase are established. The results of error analysis show that the relative error between the calculated and experimental values of flow stress is less than 10%. Thus, the constitutive equation can be used to describe the flow behavior of titanium alloy Ti55531 in the hot-working process.

 

基金项目:
航空科学基金资助项目(2012ZEL056)
作者简介:
李志燕(1982-),女,硕士,工程师
参考文献:


[1]Dikovits M,Poletti C,Warchomicka F. Deformation mechanismsin the near-β titanium alloy Ti-55531[J]. Metallurgical and Materials Transactions A,2013,44(3): 1153-1157.
[2]杨冬雨,付艳艳,惠松骁,等.高强高韧钛合金研究与应用进展[J].稀有金属,2011,35(4): 575-580.Yang D Y,Fu Y Y,Hui S X,et al. Research and application of high strength and high toughness titanium alloys[J].Chinese Journal of Rare Metals,2011,35(4):575-580.
[3]Qin D,Lu Y,Guo D,et al. Tensile deformation and fracture of Ti-5Al-5V-5Mo-3Cr-1.5Zr-0.5Fe alloy at room temperature[J]. Materials Science and Engineering: A,2013,587: 100-109.
[4]Warchomicka F,Poletti C,Stockinger M. Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr[J].Materials Science and Engineering: A,2011,528(28): 8277-8285.
[5]辛选荣,赵文龙,谢田. TB8钛合金常温压缩应力应变曲线分析[J].锻压技术,2014,39(1):126-129.Xin X R,Zhao W L,Xie T. Analysis of TB8 titanium alloy compression stress-strain curve at room temperature[J]. Forging & Stamping Technology,2014,39(1):126-129.
[6]周伟,葛鹏,赵永庆,等Ti-55531合金的高温变形行为[J].中国有色金属学报,2010,20(1):853-856.Zhou W,Ge P,Zhao Y Q,et al. Hot deformation behavior of Ti-55531 alloy [J].The Chinese Journal of Nonferrous Metals,2010,20(1):853-856.
[7]Rao K P,Hawbolt E B .Development of constitutive relationships using compression testing of a medium carbon steel[J]. Transactions of the ASME J.of Engineering Material and Technoloy,1992,114(1):116-123.
[8]Sellars C M,Mcg Tegart W J. On the mechanism of hot deformation[J].Acta Metallurtica,1966,14(9):1136-1138.
[9]Majta J,Bator A. Effects of dynamic grain boundary migration during the hot compression of high stacking fault enengy metals[J].Journal of Materials Processing Technology,2002,125(2):77-83.
[10]Huang J S,Huang L,Liu B, et al. Simulation of hot compression of Ti-Al alloy[J]. Intermetallics,2007,(15):700-705.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9