网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
楔横轧轧齐曲线的微分方程解法
英文标题:Differential equations for solving shaping curve of inside right-angle steps in cross wedge rolling
作者:赵然 张康生 胡正寰 
单位:北京科技大学 
关键词:楔横轧 内直角台阶 轧齐曲线 微分方程解法 
分类号:TG335.19
出版年,卷(期):页码:2012,37(4):70-74
摘要:

为了解决当前轧齐理论应用于复杂台阶轧齐曲线求解时存在精确性不足的问题,同时为了进一步探究轧齐成形的本质,通过改进以往解法中的几何模型,分析并给出各影响因素之间的关系函数,将轧齐曲线求解问题描述为微分方程初值问题;以内直角台阶作为实例,通过数学软件编程对微分方程进行求解,得到轧齐曲线离散函数;利用结果建立三维模型并设计轧辊,进行有限元成形模拟和轧制实验。通过对比台阶面的平面性以及展宽槽宽度,证明该解法不仅成立,同时能够成形质量更优的内直角台阶。

In order to solve the weaker precision problem when using existing method to calculate some complicated shaping curve, the study was conducted. The shaping curve solution was described as initial value problems of differential equation by improving the previous geometric model and analyzing the relationships between various factors of shaping. Using mathematical programming software, the shaping curve of inside right-angle step was presented. According to the results, the three-dimensional models were established. The shaping process was simulated by the method of FEM. The rolling experiments with same parameters were conducted too. According to comparison between results of simulations and experiments, the step-face plainness and the step-slot width obtained by the new methods are better than the older, which prove this method is not only tenable, but also can get better inside right-angle step.

基金项目:
国家自然科学基金资助项目(50575023,51075030);国家科技支撑计划资助项目(2006BAF04B03)
作者简介:
赵然(1983-),男,博士研究生
参考文献:


[1]胡正寰,张康生,王宝雨,等.楔横轧零件成形技术与模拟仿真[M].北京:冶金工业出版社,2005.
[2]张康生,胡正寰.楔横轧精确直角台阶轧齐曲线[J]. 锻压技术,1996,21(6):27-33,23.
[3]杜慧萍.楔横轧精确成形关键问题的研究[D]. 北京:北京科技大学,2006.
[4]廖垂鑫. 楔横轧内直角台阶精确成形的研究[D]. 北京:北京科技大学,2009.
[5]Zhao R, Zhang K S,Hu Z H. The calculation method of accurate shaping curve of inside right-angle step in cross wedge rolling[J]. Appl. Mech. Mater., 2010,3738:1416-1420.
[6]胡发国,王宝雨,胡正寰. 楔横轧椭圆轴指教台阶轧齐曲线[J]. 北京科技大学学报,2010,32(4):520-524.
[7]王景梁,徐春国,任广升. 楔横轧成形螺旋面表达方式研究[J]. 塑形工程学报,1998,5(4):97-101.
[8]杜惠萍,张康生,石洪磊,等. 楔横轧轧齐阶段几何形态的分析[J]. 北京科技大学学报, 2004, 26(6): 658-661.
[9]王正林,刘明. 精通MATLAB7[M]. 北京:电子工业出版社, 2006.
[10]Dormand J R, Prince P J. A family of embedded Runge-Kutta formulae[J]. J. Comp. Appl. Math., 1980,6: 19-26.
[11]王宝雨,胡发国,胡福生,等. 楔横轧轧件滚动半径变化规律的试验研究[J]. 机械工程学报, 2010,46(24):22-27.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9