网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
凸模直径对拼焊板极限胀形成形性能影响的数值模拟
英文标题:Numerical simulation of influence of punch diameter on limit bulging properties for tailored welded blanks
作者:陈水生 孙东继 
单位:河南理工大学 上海通用汽车有限公司 
关键词:拼焊板 凸模直径 极限胀形高度 极限应变 临界直径 
分类号:TG386
出版年,卷(期):页码:2015,40(8):41-46
摘要:
为了获得极限胀形高度试验中合理的凸模直径D,采用试验和有限元法研究D对拼焊板胀形成形特征的影响。建模过程中,焊缝作为独立部分被赋予材料性能和宽度;拼焊板与模具间的摩擦系数通过试验与仿真载荷-位移曲线对比确定。通过对比试验与仿真结果即极限胀形高度和开裂位置,证明了有限元模型的合理性。基于模型,分析D对相对极限胀形高度及极限应变的影响。结果表明,对板厚比大的拼焊板,D对相对极限胀形高度和极限应变有显著影响,对板厚比小的影响较小。D存在一个临界值,当超过临界值后,极限胀形成形特征稳定。当摩擦系数为0.08时,板厚比较大的冷轧镀锌板DC56D+Z拼焊板极限胀形试验的D临界值约为100.0 mm。
To probe the reasonable punch diameter D from the limit bulging height (LBH) test, the influence of D on the formability of tailor welded blanks (TWBs) was discussed by the experiment and finite element (FE) method. In the model of TWBs,the weld was treated independent part and given with  the weld properties and the width. The friction coefficient between tools and TWBs was determined by comparison of the load-displacement curves of the experiments with that of the simulations. The established FE model was proved to be available by comparing the limit bulging height and the crack location in the experiment with that in the simulation. The influences of D on the relative LBH and the limit strain were analyzed based on the FE model. The results indicate that when TR is large, D has significant effect on the formability of TWBs; otherwise, D has little effect. There is a critical value for D. When D exceeds the critical value, the forming formability of TWBs maintains steady. When the friction coefficient is 0.08, critical value D in the limit bulging test is 100 mm for the cold rolled galvanized sheet and tailor welded blanks with a larger TR.
基金项目:
河南省教育厅科学技术研究重点项目(14A460013); 河南省科技攻关计划资助项目(142102210130)
作者简介:
陈水生(1978-),男,博士,讲师
参考文献:


[1]Joseph C, Benedy K. Light metals in automotive applications [J]. Light Metal Age, 2000, 58(10): 34-35.
[2]Bandyopadhyay K, Basak S, Panda S K, et al. Use of stress based forming limit diagram to predict formability in two-stage forming of tailor welded blanks [J]. Materials & Design, 2015, 67: 558-570.
[3]张双杰, 张招, 闫华军, 等. 基于高强度拼焊板的B柱内板工艺参数研究[J]. 锻压技术, 2014, 39(3): 29-33.Zhang S J,Zhang Z,Yan H J,et al. Research of process parameters on B-pillar inner based on HSSTWB [J]. Forging & Stamping Technology,2014,39(3):29-33.
[4]陈水生, 孙东继. 基于失效模式的拼焊板焊缝建模方式确定[J]. 锻压技术, 2014, 39(9): 11-16.Chen S S,Sun D J.Determination of weld modeling method for the tailor welded blanks based on failure modes [J]. Forging & Stamping Technology,2014,39(9):11-16.
[5]Gaied S, Roelandt J, Pinard F, et al. Experimental and numerical assessment of tailor-welded blanks formability[J]. Journal of Materials Processing Technology, 2009, 209(1):387-395.
[6]Tang B T, Zhao Z, Yu S, et al. One-step FEM based control of weld line movement for tailor-welded blanks forming [J]. Journal of Materials Processing Technology, 2007, 187(4):383-386.
[7]Abbasi M, Bagheri B, Ketabchi M, et al. Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank [J]. Computational Materials Science, 2012, 53(1):368-376.
[8]Bandyopadhyay K, Basak S, Panda S K, et al. Use of stress based forming limit diagram to predict formability in two-stage forming of tailor welded blanks [J]. Materials & Design, 2015, 67: 558-570.
[9]GB/T 15825.8—2008, 金属薄板成形性能与试验方法第8部分:成形极限图(FLD)测定指南[S].GB/T 15825.8—2008, Sheet metal formability and test methods—Part 8:Guidelines for the determination of forming-limit diagrams[S].
[10]Ganesh Narayanan R, Narasimhan K. Weld region representation during the simulation of TWB forming behavior [J]. International Journal of Forming Processes, 2006, 9(4): 491-518.
[11]Song Y L, Hua L. Influence of inhomogeneous constitutive properties of weld materials on formability of tailor welded blanks [J]. Materials Science & Engineering A, 2012, 552(5):222-229.
[12]Elangovan K, Sathiya Narayanan C, Narayanasamy R. Modelling of forming limit diagram of perforated commercial pure aluminium sheets using artificial neural network [J]. Computational Materials Science, 2010, 47(4):1072-1078.
[13]Panda S K, Ravi Kumar D. Improvement in formability of tailor welded blanks by application of counter pressure in biaxial stretch forming [J]. Journal of Materials Processing Technology, 2008, 204:70-79.
[14]Chung K, Lee S Y, Barlat F, et al. Finite element simulation of sheet forming based on a planar anisotropic strain-rate potential [J]. International Journal of Plasticity, 1996, 12(1): 93-116.
[15]GB/T 228.1—2010, 金属材料  拉伸试验  第1部分:室温试验方法[S].GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
[16]Abbasi M, Ketabchi M, Ramazani A, et al. Investigation into the effects of weld zone and geometric discontinuity on the formability reduction of tailor welded blanks [J]. Computational Materials Science, 2012, 59:158-164.
[17]Song Y L, Hua L, Chu D N, et al. Characterization of the inhomogeneous constitutive properties of laser welding beams by the micro-Vickers hardness test and the rule of mixture [J]. Materials & Design, 2012, 37:19-27.
[18]Safdarian R, Jorge R M N, Santos A D, et al. A comparative study of forming limit diagram prediction of tailor welded blanks [J]. International Journal of Material Forming, 2014, 8(2): 293-304.
[19]Chen S S, Lin J P, Liu J. Effect of the thickness ratio on the failure modes of tailor-welded blanks [J]. Advanced Materials Research, 2011, 189: 2965-2969.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9