[1]Joseph C, Benedy K. Light metals in automotive applications [J]. Light Metal Age, 2000, 58(10): 34-35. [2]Bandyopadhyay K, Basak S, Panda S K, et al. Use of stress based forming limit diagram to predict formability in two-stage forming of tailor welded blanks [J]. Materials & Design, 2015, 67: 558-570. [3]张双杰, 张招, 闫华军, 等. 基于高强度拼焊板的B柱内板工艺参数研究[J]. 锻压技术, 2014, 39(3): 29-33.Zhang S J,Zhang Z,Yan H J,et al. Research of process parameters on B-pillar inner based on HSSTWB [J]. Forging & Stamping Technology,2014,39(3):29-33. [4]陈水生, 孙东继. 基于失效模式的拼焊板焊缝建模方式确定[J]. 锻压技术, 2014, 39(9): 11-16.Chen S S,Sun D J.Determination of weld modeling method for the tailor welded blanks based on failure modes [J]. Forging & Stamping Technology,2014,39(9):11-16. [5]Gaied S, Roelandt J, Pinard F, et al. Experimental and numerical assessment of tailor-welded blanks formability[J]. Journal of Materials Processing Technology, 2009, 209(1):387-395. [6]Tang B T, Zhao Z, Yu S, et al. One-step FEM based control of weld line movement for tailor-welded blanks forming [J]. Journal of Materials Processing Technology, 2007, 187(4):383-386. [7]Abbasi M, Bagheri B, Ketabchi M, et al. Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank [J]. Computational Materials Science, 2012, 53(1):368-376. [8]Bandyopadhyay K, Basak S, Panda S K, et al. Use of stress based forming limit diagram to predict formability in two-stage forming of tailor welded blanks [J]. Materials & Design, 2015, 67: 558-570. [9]GB/T 15825.8—2008, 金属薄板成形性能与试验方法第8部分:成形极限图(FLD)测定指南[S].GB/T 15825.8—2008, Sheet metal formability and test methods—Part 8:Guidelines for the determination of forming-limit diagrams[S]. [10]Ganesh Narayanan R, Narasimhan K. Weld region representation during the simulation of TWB forming behavior [J]. International Journal of Forming Processes, 2006, 9(4): 491-518. [11]Song Y L, Hua L. Influence of inhomogeneous constitutive properties of weld materials on formability of tailor welded blanks [J]. Materials Science & Engineering A, 2012, 552(5):222-229. [12]Elangovan K, Sathiya Narayanan C, Narayanasamy R. Modelling of forming limit diagram of perforated commercial pure aluminium sheets using artificial neural network [J]. Computational Materials Science, 2010, 47(4):1072-1078. [13]Panda S K, Ravi Kumar D. Improvement in formability of tailor welded blanks by application of counter pressure in biaxial stretch forming [J]. Journal of Materials Processing Technology, 2008, 204:70-79. [14]Chung K, Lee S Y, Barlat F, et al. Finite element simulation of sheet forming based on a planar anisotropic strain-rate potential [J]. International Journal of Plasticity, 1996, 12(1): 93-116. [15]GB/T 228.1—2010, 金属材料 拉伸试验 第1部分:室温试验方法[S].GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S]. [16]Abbasi M, Ketabchi M, Ramazani A, et al. Investigation into the effects of weld zone and geometric discontinuity on the formability reduction of tailor welded blanks [J]. Computational Materials Science, 2012, 59:158-164. [17]Song Y L, Hua L, Chu D N, et al. Characterization of the inhomogeneous constitutive properties of laser welding beams by the micro-Vickers hardness test and the rule of mixture [J]. Materials & Design, 2012, 37:19-27. [18]Safdarian R, Jorge R M N, Santos A D, et al. A comparative study of forming limit diagram prediction of tailor welded blanks [J]. International Journal of Material Forming, 2014, 8(2): 293-304. [19]Chen S S, Lin J P, Liu J. Effect of the thickness ratio on the failure modes of tailor-welded blanks [J]. Advanced Materials Research, 2011, 189: 2965-2969.
|