网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Al-Zn-Mg-Cu高强铝合金等温多向自由锻组织性能研究
英文标题:Research on microstructure and properties of high strength aluminum alloy Al-Zn-Mg-Cu in isothermal multi-axial open-die forging
作者:赵晓东 王亮 喻征 陈慧琴 刘建生 
单位:太原科技大学 北京航空材料研究院 
关键词:Al-Zn-Mg-Cu高强铝合金 厚板锻件 等温多向自由锻造 组织性能 
分类号:TG146
出版年,卷(期):页码:2015,40(9):1-6
摘要:

针对高强铝合金在多向自由锻造过程中存在热锻开裂严重及组织不均匀等问题,采用不同锻造工艺对新型Al-Zn-Mg-Cu高强铝合金进行等温多向锻造实验研究。并对经固溶时效热处理后的厚板锻件试样进行了组织观察与力学性能测试。分析对比了采用不同的变形温度、变形方式和锻比等工艺参数对该合金厚板锻件组织和性能的影响。结果表明:在总锻比达到11~12的条件下,采用420 ℃高温大变形动态再结晶和380 ℃低温大变形静态再结晶的成形工序均可细化锻件晶粒组织,在保持锻件较高强度性能的基础上,可以改善其塑韧性,并且可以适当减少制坯工序、缩短工艺流程和提高生产效率。

For the problems of hot forging crack heavily and uneven microstructure in the multi-axial free forging process of high strength aluminum alloy Al-Zn-Mg-Cu, the isothermal multi-axial forging process was studied under different forging processes. Then, the microstructure and mechanical properties of the forging samples after solid-solution and aging heat treatment were observed and tested. The influences of deformation temperatures, deformation modes and forging ratios on microstructure and properties of the forging were analyzed and compared. The results indicate that when the total forging ratio is up to 11-12, grain refinement in the forging process can be obtained by large deformation dynamic recrystallizatin at a high-temperature of 420 ℃ and then static recrystallization at a low-temperature of 380 ℃ during the forming, which can make the part with higher strength, good plastic and toughness. Meanwhile the process of making billet can also be simplified, then the forming process can be shortened and the productivity can be increased.

基金项目:
国家自然科学基金资助项目(51175361);山西省科技攻关项目(20110321013-02);太原市科技明星项目(120247-1)
作者简介:
赵晓东(1978-),男,博士研究生,讲师;通讯作者:陈慧琴(1968-),女,博士,教授
参考文献:


[1]张新明,刘胜胆.航空铝合金及其材料加工[J].中国材料进展,2013,32(1):39-55.Zhang X M,Liu S D. Aerocraft aluminum alloys and their materials processing[J].Materials China,2013,32(1):39-55.
[2]Lequeu P,Lassince P,Warner T,et al. Aluminum alloy development for the airbus A380 part 2[J]. Advanced Materials & Process, 2007, 165: 41 - 44.
[3]Nakai M.New aspects of development of high strength aluminum alloys for aerospace applications[J]. Materials Science and Engineering:A,2000,A285(1):62-68.
[4]Poole W J, Wells M A, Lloyd D J. Advanced aluminum and hybrid aerostructures for future aircraft[J]. Materials Science Forum,2006,519/521(2): 1233-1238.
[5]Karabin M E,Barlat F,Shuey R T.Finite element modeling of plane strain toughness for 7085 aluminum alloy[J]. Metallurgical and Materials Transactions A,2009,40(2): 354-364.
[6]张廷杰,张小明,田锋,等.7075铝合金在多向大变形锻造和退火中细晶粒结构的演变[J]. 稀有金属材料与工程,2001,30(5):335-338.Zhang T J,Zhang X M,Tian F,et al. Evolution of fine grained structure in 7075 aluminum alloy during hot forging and annealing[J]. Rare Metal Materials and Engineering,2001,30(5):335-338.
[7]张小明,张廷杰,田锋,等.多向锻造对改善7075铝合金性能的作用[J]. 稀有金属材料与工程,2003,32(5):372-374.Zhang X M,Zhang T J, Tian F,et al. Effects of multi-direction forging on improving properties of 7075 aluminum alloy[J]. Rare Metal Materials and Engineering,2003,32(5):372-374.
[8]郭强,严红革,陈振华,等.多向锻造技术研究进展[J]. 材料导报,2007,21(2):106-108.Guo Q,Yan H G,Chen Z H,et al. Research progress in multiple forging process [J]. Materials Review,2007, 21(2):106-108.
[9]张云飞,王亮,赵晓东,等.Al-Zn-Mg-Cu高强铝合金多向自由锻数值模拟与实验研究[J]. 锻压技术,2013,38(4):167-171.Zhang Y F,Wang L,Zhao X D,et al. Numerical simulation and experiment research on mufti-directional free forging of Al-Zn-Mg-Cu high strength aluminum alloy [J]. Forging & Stamping Technology,2013,38(4):167-171.
[10]王胜强,王少华,马志峰,等.一种新型Al-Zn-Mg-Cu-Zr合金的变形行为研究[J].材料工程,2012,(6):11-15.Wang S Q,Wang S H,Ma Z F,et al. Nvestigation on deformation behavior of a new type Al-Zn-Mg-Cu-Zr alloy[J]. Journal of Materials Engineering,2012,(6):11-15.
[11]白林振,陈慧琴. 镦拔对Al-Zn-Mg-Cu合金变形和组织的影响[J].锻压技术,2011,36 (4): 134-147.Bai L Z,Chen H Q. Influence of upsetting and drawing on deformation and microstructure of AI-Zn-Mg-Cu alloy[J]. Forging & Stamping Technology,2011,36 (4): 134-147.
[12]李大乔,颜银标,张頔. 多向锻造对7A04铝合金组织与性能的影响[J]. 有色金属加工,2014,4(4):26-29.Li D Q,Yan Y B,Zhang D. Effects of multi-direction forging on microstructures and properties of 7A04 aluminum alloy [J].Nonferrous Metals Engineering,2014,4(4):26-29.
[13]罗国云,易幼平,崔金栋. 7A85 铝合金大锻件多向锻造均匀性研究[J]. 热加工工艺,2014,43 (9):147-150.Luo G Y,Yi Y P,Cui J D. Research on uniformity of muti-directional forging for 7A85 aluminum alloy large-sized forgings[J]. Hot Working Technology,2014,43 (9):147-150.
[14]陈学海,陈康华,梁信,等.热变形温度对 7085 铝合金组织和性能的影响[J]. 中国有色金属学报,2011,21(1):88-94.Chen X H,Chen K H,Liang X,et al. Effects of hot deformation temperature on microstructure and properties of 7085 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals,2011,21(1):88-94.
[15]梁信,陈康华,陈学海,等.等温锻造速率对 7085 铝合金组织与性能的影响[J]. 粉末冶金材料科学与工程,2011,16(2): 290-295.Liang X,Chen K H,Chen X H,et al. Effect of isothermal forging rate on microstructure and properties of 7085 aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy,2011,16(2): 290-295.
[16]梁信,陈康华,陈学海,等.等温自由锻温度对 7085 铝合金组织与性能的影响[J]. 中南大学学报,2012,43(3): 900-905.Liang X,Chen K H,Chen X H,et al. Effects of isothermal free forging temperature on microstructure and properties of 7085 aluminum alloy[J]. Journal of Central South University,2012,43(3): 900-905.
[17]赵晓东,陶乐晓,王金亮,等.新型高强铝合金的热变形行为及组织演变[J].稀有金属材料与工程,2014,43(9):2172-2176.Zhao X D,Tao L X,Wang J L,et al. Hot deformation behavior and microstructure evolution of a new high strength aluminum alloy[J]. Rare Metal Materials and Engineering,2014,43(9):2172-2176.
[18]GB/T 228.1—2010,金属材料拉伸试验 第1部分:室温试验方法[S].GB/T 228.1—2010,Tensile testing of metallic materials: Part 1: Method of test at ambient temperature[S].
[19]GB/T 4161—2007,金属材料平面应变断裂韧度KIC试验方法[S].GB/T 4161—2007,Test method for plane-strain fracture toughness KIC of metallic materials[S].
[20]张坤,李惠曲,陈慧琴,等.Al-Zn-Mg-Cu新型高强铝合金热变形组织演变机理和规律[J].轻合金加工技术,2010,38(10):55-58.Zhang K,Li H Q,Chen H Q,et al. Microstructure mechanisms and evolution during hot deformation of a new Al-Zn-Mg-Cu high strength aluminum alloy[J]. Light Alloy Fabrication Technology,2010,38(10):55-58.
[21]Sakai T,Miura H,Goloborodko A,et al.Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475[J].Acta Materialia,2009,57(1):153-162.
[22]Myshlyaev M M, Mcqueen H J,Mwembela a, et al.Dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy[J].Materials Science and Engineering:A,2002,337(1-2):121-133.
[23]韩连华,白林振,陈慧琴. 热处理对Al-Zn-Mg-Cu合金第二相粒子分布和晶粒尺寸的影响[J]. 金属热处理,2014,39(8):11-15.Han L H,Bai L Z,Chen H Q. Influence of intermediate heat treatment on distribution of second phase particles and grain size of Al-Zn-Mg-Cu alloy[J]. Heat Treatment of Metals,2014,39(8):11-15.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9