网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻造操作机夹钳旋转系统的T-S模糊建模
英文标题:Modeling on rotation system of forging manipulator based on T-S fuzzy mode
作者:罗杰华 丁文华 段小刚 邓华 
单位:中南大学 
关键词:锻造操作机 液压伺服系统 非线性系统 T-S模糊模型 
分类号:TG316;TP39
出版年,卷(期):页码:2015,40(9):62-68
摘要:

针对锻造操作机液压伺服驱动夹钳旋转系统的强非线性问题,提出了一种基于T-S模糊模型的夹钳旋转系统的建模方法。根据夹钳旋转系统的非线性特性,把锻造操作机夹钳旋转系统的状态空间划分为若干个子空间,构建成具有参数不确定性的T-S模糊模型。将模糊推理系统中的模糊规则及隶属度函数参数通过自适应模糊神经网络自学习整定,产生模糊规则和隶属度函数。通过实验验证所建夹钳旋转系统T-S模糊模型的合理性。实验结果表明,建立夹钳旋转系统T-S模糊模型的输出与实验实际系统的输出基本吻合,所建立的夹钳旋转系统T-S模糊模型为夹钳旋转系统的控制提供了基础。

For the nonlinear problem on clamp rotation system of forging manipulator by the hydraulic servo driving, a modeling method of the clamp rotation system was proposed based on T-S fuzzy modeling. According to the nonlinear characteristics of the clamp rotation system, the state space of the clamp rotation system in the forging manipulator was divided into several sub spaces to build a T-S fuzzy model with the uncertain parameters. Then, the fuzzy rules and membership function parameters in fuzzy inference system were adjusted by adaptive neuro-fuzzy inference(ANFIS), and the fuzzy rules and membership function were produced. Finally, the rationality of the T-S fuzzy model was validated by the experiment. The experimental results show that the calculated values by T-S fuzzy model of the clamp rotation system are basically consistent with the measuring values by the actual system, and the established T-S fuzzy model of the clamp rotation system provides the foundation for the control of the clamp rotation system.

基金项目:
国家973课题“大尺度重型构件稳定夹持原理及夹持系统驱动策略(2006CB705404)”;高性能复杂制造国家重点实验室自主研究课题(zzyjkt2013-22B)
作者简介:
罗杰华(1987-)男,硕士研究生;通讯作者:段小刚(1972-)男,博士,讲师
参考文献:


[1]陈博翁, 关立文, 李铁民. 基于 ADAMS 的锻造操作机动力学仿真及优化设计[J]. 机械设计与制造, 2009, 3(3): 6-8.Chen B W, Guan L W, Li T M. Dynamic simulation and optimization design for forging manipulator based on ADAMS[J]. Machinery Design & Manufacture, 2009, 3(3): 6-8.
[2]Wang J, Gao F, Zhang Y. Proceedings of the institution of mechanical engineers, Part B[J]. Journal of Engineering Manufacture, 2012,226: 279-289.
[3]Kawamoto S, Tada K, Ishigame A, et al. An approach to stability analysis of second order fuzzy systems[A]. IEEE International Conference on Fuzzy Systems
[C]. US:San Diego,1992.
[4]Rhee B J, Won S. A new fuzzy Lyapunov function approach for a Takagi–Sugeno fuzzy control system design[J]. Fuzzy Sets and systems, 2006, 157(9): 1211-1228.
[5]Tanaka K, Sano M. A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer[J]. IEEE Transactions on Fuzzy Systems, 1994, 2(2):119-134.
[6]Wang H O, Tanaka K, Griffin M F. An approach to fuzzy control of nonlinear systems: stability and design issues[J].IEEE Transactions on Fuzzy Systems, 1996, 4(1): 14-23.
[7]Li J, Niemann D, Wang H O. Robust tracking for high-rise/high-speed elevators[A]. American Control Conference[C]. US:Philadelphia, 1998.
[8]郑科, 徐建明, 俞立. 基于 TS 模型的倒立摆最优保性能模糊控制[J]. 控制理论与应用, 2005, 21(5): 703-708.Zheng K, Xu J M, Yu L. Takagi-Sugeno model-based optimal guaranteed cost fuzzy control for inverted pendulums[J]. Control Theory & Applications, 2005,21(5): 703-708.
[9]邓华, 李许岗, 段小刚. 重载操作机夹钳角位移控制策略研究[J]. 控制工程, 2013, 20(2): 235-238.Deng H, Li X G, Duan X G. Study of control strategy for clamp angular displacement of the heavy-load forging manipulator[J]. Control Engineering of China, 2013, 20(2): 235-238.
[10]Tafazoli S, de Silva C W, Lawrence P D. Tracking control of an electrohydraulic manipulator in the presence of friction[J]. IEEE Transactions on Control Systems Technology, 1998, 6(3): 401-411.
[11]贾文华, 殷晨波. 一种压力补偿阀的建模及稳定性分析[J]. 上海交通大学学报, 2011, 45(4): 561-564.Jia W H, Yin C B. Modeling and stability analysis of a pressure compensator for flow-control valve[J]. Journal of Shanghai Jiao Tong University, 2011, 45(4): 561-564.
[12]Chen C Y, Liu L Q, Cheng C C, et al. Fuzzy controller design for synchronous motion in a dual-cylinder electro-hydraulic system[J]. Control Engineering Practice, 2008, 16(6): 658-673.
[13]Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man and Cybernetics, 1985,(1): 116-132.
[14]Ying H. Analytical analysis and feedback linearization tracking control of the general Takagi-Sugeno fuzzy dynamic systems[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 1999, 29(2): 290-298.
[15]Chang W J, Sun C C, Chung H Y. Fuzzy controller design for discrete controllability canonical Takagi-Sugeno fuzzy systems[J]. IEE Proceedings-Control Theory and Applications, 2004, 151(3): 319-328.
[16]Tanaka K, Sugeno M. Stability analysis and design of fuzzy control systems[J]. Fuzzy Sets and Systems, 1992, 45(2): 135-156.
[17]Boyacioglu M A, Avci D. An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange[J]. Expert Systems with Applications, 2010, 37(12): 7908-7912.
[18]Avci E. Comparison of wavelet families for texture classification by using wavelet packet entropy adaptive network based fuzzy inference system[J]. Applied Soft Computing, 2008, 8(1): 225-231.
[19]刘丽兰,刘宏昭,吴子英,等. 机械系统中摩擦模型的研究进展[J]. 力学进展, 2008, 38(2): 201-213.Liu L L, Liu H Z, Wu Z Y, et al. The research progress of mechanical friction model in the systemp[J]. Advances In Mechanics, 2008, 38(2): 201-213.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9