[1]郭建亭, 周兰章, 袁超, 等. 我国独创和独具特色的几种高温合金的组织和性能[J]. 中国有色金属学报, 2011, 21(2): 237-250.Guo J T, Zhou L Z, Yuan C, et al. Microstructure and properties of severaloriginally invented and unique superalloys in China[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(2):237-250. [2]丰建朋, 刘东, 罗子健, 等. GH141合金和GH907合金的本构关系[J].热加工工艺, 1997,26(5): 21-23.Feng J P, Liu D, Luo Z J, et al. The constitutive relationship for GH141 alloy and GH907 alloy[J].Hot Working Technology, 1997,26(5):21-23. [3]丰建朋, 郭灵, 张麦仓, 等. 人工神经网络在建立变形高温合金本构关系中的应用[J].中国机械工程, 1999,10(1): 49-52.Feng J P, Guo L, Zhang M C, et al. The establishment of constitutive relationship for wrought superalloys by artificial neural network[J]. China Mechanical Engineering, 1999,10(1): 49-52. [4]刘鹏飞, 刘东, 罗子健, 等. GH761合金的热变形行为与动态再结晶模型[J]. 稀有金属材料与工程, 2009, 38(2): 275-280.Liu P F, Liu D, Luo Z J, et al. Low behavior and dynamic recrystallization model for GH761 superalloy during hot deformation[J]. Rare Metal Materials and Engineering, 2009, 38(2): 275-280. [5]胡弘剑, 石磊, 纪仁峰, 等. GH4145高温合金热塑性变形流变应力研究[A]. 2009年第七届中国钢铁年会论文集[C]. 北京,2009.Hu H J, Shi L, Ji R F, et al. Research on flow stress behavior of superalloy GH4145 during high temperature plastic deformation[A]. Proceedings of the 7th China Steel Conference in 2009[C]. Beijing,2009. [6]白亚冠, 聂义宏, 朱怀沈,等. Al-Nb对700 ℃发电机组转子用GH706合金组织和拉伸性能的影响[J]. 特殊钢, 2013, 34(4): 62-66.Bai Y G, Nie Y H, Zhu H S, et al. Effect of AI-Nb on structure and tensile properties of alloy GH706 for rotor of 700 ℃ power unit[J]. Special Steel, 2013, 34(4): 62-66. [7]信昕, 孙文儒, 程丽萍, 等. Al, Nb含量对GH706合金长期时效组织及持久性能的影响[J]. 材料与冶金学报, 2010, 9(1): 18-24.Xin X, Sun W R, Cheng L P, et al. Effects of Al and Nb on microstructures and stress rupture property of long-time aging GH706 alloy[J]. Journal of Materials and Metallurgy, 2010, 9(1): 18-24. [8]董建新, 张麦仓, 曾燕屏. Inconel 706合金宏观偏析“黑斑”的形成特征及组织行为[J]. 稀有金属材料与工程, 2006, 35(2): 176-180.Dong J X, Zhang M C, Zeng Y P. Microstructure behavior and freckle characteristics for GH706 superalloy[J].Rare Metal Materials and Engineering, 2006, 35(2): 176-180. [9]Mukherji D, Gilles R, Barbier B. Lattice misfit measurement in Inconel 706 containing coherent γ′ and γ″ precipitates[J]. Scripta Materialia, 2003, 48:333-339. [10]Chris Maharaj, Andy Morris, John P Dear. Modelling of creep in Inconel 706 turbine disc fir-tree[J]. Materials Science & Engineering, 2012,A 558: 412-421. [11]彭剑冰, 边丽虹, 杨艳慧, 等. GH706合金流变曲线特性及本构关系[J].热加工工艺, 2013, 42(20): 1-5.Peng J B, Bian L H, Yang Y H, et al. Characteristics of flow curves and constitutive relationship of GH706 alloy[J]. Hot Working Technology, 2013, 42(20): 1-5. [12]Abbasi-Bani A, Zarei-Hanzaki A, Pishbin M H, et al. A comparative study on the capability of Johnson-Cook and Arrhenius-type constitutive equations to describethe ow behavior of Mg–6Al–1Zn alloy[J].Mechanics of Materials,2014,71:52-61. [13]Rao K P, Haubolt E B. Development of constitutive relationships by using compression testing of a medium carbon steel[J]. Engineering Materials and Technology,1992,114:16-25. [14]An He, Ganlin Xie, Hailong Zhang, et al. A comparative study on Johnson-cook, modified Johnson-cook and arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel[J]. Materials and Design,2013,52:677-685. [15]Jiang Li, Fuguo Li, Jun Cai, et al. Comparative investigation on the modified Zerilli-Armstrong model and Arrhenius-type model to predict the elevated-temperature flow behaviour of 7050 aluminium alloy[J].Computational Materials Science,2013,71:56-65. [16]Kocks U F. Laws for work-harding and low-temperature creep[J]. Eng. Mater. Technol. Trans. ASME,1976,98;76-85.
|