网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铸态GH706合金的热变形行为研究
英文标题:Study on hot deformation behavior of cast alloy GH706
作者:刘国伟 赵兴东 杨艳慧 刘东 
单位:西北工业大学 中航工业沈阳黎明航空发动机(集团)有限责任公司 
关键词:铸态GH706合金 热模拟压缩试验 流变曲线 本构关系 Arrhenius模型 Voce方程 
分类号:TG316
出版年,卷(期):页码:2015,40(9):117-124
摘要:

通过热模拟压缩试验,得到了温度为1100,1130,1160和1190 ℃、应变速率为0.01,0.1和1 s-1下的铸态GH706合金流变曲线,分析了流变曲线的特征及成因,并通过与锻态材料对比,得出铸态材料在高应变速率下更容易产生应变硬化的结论;应用Arrhenius模型对实验数据进行回归分析,建立了0.2~0.8应变范围内铸态GH706合金的本构关系,统计计算了模型预测的流动应力和实验值之间的最大相对误差为13.1%;应用Voce方程建立了铸态GH706合金应变0~0.2范围内的本构关系,模型预测流动应力和实验值之间的平均相对误差为0.2%,很好地反映了低应变条件下材料的硬化行为。

The stress-strain curves of cast alloy GH706 were obtained based on the data of compression tests from thermo-simulation under the condition of temperatures 1100-1090 ℃ and strain rates 0.01-1 s-1, and the characteristics and cause of the stress-strain curves were analyzed. Compared with the forging material, cast material is easy to produce the work hardening at high strain rates. The linear regression analysis of experimental data was carried out by Arrhenius model, the constitutive equation of cast alloy GH706 under the strain range of 0.2-0.8 was established, and the maximum relative error between calculated value and experimental value is 13.1%. Furthermore, the constitutive equations of cast alloy GH706 at the strain range of 0-0.2 was built by Voce equation, the average relative error between calculated value and experimental value is 0.2%, which shows the work hardening behavior of cast alloy GH706 at the low strain rates well.

基金项目:
教育部高等学校博士学科点专项科研基金资助项目(20126102120022)
作者简介:
刘国伟(1988-)男,硕士研究生;通讯作者:刘东(1969-)男,博士,教授
参考文献:


[1]郭建亭, 周兰章, 袁超, 等. 我国独创和独具特色的几种高温合金的组织和性能[J]. 中国有色金属学报, 2011, 21(2): 237-250.Guo J T, Zhou L Z, Yuan C, et al. Microstructure and properties of severaloriginally invented and unique superalloys in China[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(2):237-250.
[2]丰建朋, 刘东, 罗子健, 等. GH141合金和GH907合金的本构关系[J].热加工工艺, 1997,26(5): 21-23.Feng J P, Liu D, Luo Z J, et al. The constitutive relationship for GH141 alloy and GH907 alloy[J].Hot Working Technology, 1997,26(5):21-23.
[3]丰建朋, 郭灵, 张麦仓, 等. 人工神经网络在建立变形高温合金本构关系中的应用[J].中国机械工程, 1999,10(1): 49-52.Feng J P, Guo L, Zhang M C, et al. The establishment of constitutive relationship for wrought superalloys by artificial neural network[J]. China Mechanical Engineering, 1999,10(1): 49-52.
[4]刘鹏飞, 刘东, 罗子健, 等. GH761合金的热变形行为与动态再结晶模型[J]. 稀有金属材料与工程, 2009, 38(2): 275-280.Liu P F, Liu D, Luo Z J, et al. Low behavior and dynamic recrystallization model for GH761 superalloy during hot deformation[J]. Rare Metal Materials and Engineering, 2009, 38(2): 275-280.
[5]胡弘剑, 石磊, 纪仁峰, 等. GH4145高温合金热塑性变形流变应力研究[A]. 2009年第七届中国钢铁年会论文集[C]. 北京,2009.Hu H J, Shi L, Ji R F, et al. Research on flow stress behavior of superalloy GH4145 during high temperature plastic deformation[A]. Proceedings of the 7th China Steel Conference in 2009[C]. Beijing,2009.
[6]白亚冠, 聂义宏, 朱怀沈,等. Al-Nb对700 ℃发电机组转子用GH706合金组织和拉伸性能的影响[J]. 特殊钢, 2013, 34(4): 62-66.Bai Y G, Nie Y H, Zhu H S, et al. Effect of AI-Nb on structure and tensile properties of alloy GH706 for rotor of 700 ℃ power unit[J]. Special Steel, 2013, 34(4): 62-66.
[7]信昕, 孙文儒, 程丽萍, 等. Al, Nb含量对GH706合金长期时效组织及持久性能的影响[J]. 材料与冶金学报, 2010, 9(1): 18-24.Xin X, Sun W R, Cheng L P, et al. Effects of Al and Nb on microstructures and stress rupture property of long-time aging GH706 alloy[J]. Journal of Materials and Metallurgy, 2010, 9(1): 18-24.
[8]董建新, 张麦仓, 曾燕屏. Inconel 706合金宏观偏析“黑斑”的形成特征及组织行为[J]. 稀有金属材料与工程, 2006, 35(2): 176-180.Dong J X, Zhang M C, Zeng Y P. Microstructure behavior and freckle characteristics for GH706 superalloy[J].Rare Metal Materials and Engineering, 2006, 35(2): 176-180.
[9]Mukherji D, Gilles R, Barbier B. Lattice misfit measurement in Inconel 706 containing coherent γ′ and γ″ precipitates[J]. Scripta Materialia, 2003, 48:333-339.
[10]Chris Maharaj, Andy Morris, John P Dear. Modelling of creep in Inconel 706 turbine disc fir-tree[J]. Materials Science & Engineering, 2012,A 558: 412-421.
[11]彭剑冰, 边丽虹, 杨艳慧, 等. GH706合金流变曲线特性及本构关系[J].热加工工艺, 2013, 42(20): 1-5.Peng J B, Bian L H, Yang Y H, et al. Characteristics of flow curves and constitutive relationship of GH706 alloy[J]. Hot Working Technology, 2013, 42(20): 1-5.
[12]Abbasi-Bani A, Zarei-Hanzaki A, Pishbin M H, et al. A comparative study on the capability of Johnson-Cook and Arrhenius-type constitutive equations to describethe ow behavior of Mg–6Al–1Zn alloy[J].Mechanics of Materials,2014,71:52-61.
[13]Rao K P, Haubolt E B. Development of constitutive relationships by using compression testing of a medium carbon steel[J]. Engineering Materials and Technology,1992,114:16-25.
[14]An He, Ganlin Xie, Hailong Zhang, et al. A comparative study on Johnson-cook, modified Johnson-cook and arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel[J]. Materials and Design,2013,52:677-685.
[15]Jiang Li, Fuguo Li, Jun Cai, et al. Comparative investigation on the modified Zerilli-Armstrong model and Arrhenius-type model to predict the elevated-temperature flow behaviour of 7050 aluminium alloy[J].Computational Materials Science,2013,71:56-65.
[16]Kocks U F. Laws for work-harding and low-temperature creep[J]. Eng. Mater. Technol. Trans. ASME,1976,98;76-85.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9