网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
两种塑性失稳理论下的分散性颈缩极限预测
英文标题:Diffused necking limit predicted by two different plastic instability theories
作者:夏梦 顾苏楠 刘海亭 
单位:上海交通大学 东南大学 
关键词:成形极限曲线 分散性颈缩 本构模型 塑性失稳理论 
分类号:TG381
出版年,卷(期):页码:2015,40(9):128-133
摘要:

使用考虑金属材料各向异性及内部微损伤的弹塑性本构模型结合Hill一般性分叉理论及Swift最大拉力失稳理论,进行了金属材料的成形极限曲线的理论计算。基于Hill一般性分叉理论的计算使用有限元软件Abaqus进行;对于Swift最大拉力失稳理论,推导了4种各向同性硬化模型下的长轴、短轴极限应变解析表达式。计算结果表明:在平面应力大变形条件下,使用Hill一般性分叉失稳理论与Swift最大拉力理论预测得到的金属的分散性颈缩发生时对应的极限应变之间的差异小于2%,在实际应用中当难以使用Swift最大拉力理论对复杂材料进行分散性颈缩极限应变的解析计算时,可以使用一般性分叉理论进行替代计算。

The theoretical calculation of forming limit curve of metals was carried out by a damaged elastic-plastic constitutive model according to its anisotropy and tiny microdamage combining with the Hills general bifurcation theory and Swifts maximum force theory. Calculation with Hills theory was realized by Abaqus, while analytical formulas of major and minor limit strain under four different hardening laws were found by Swift's theory. Results show that under the condition of plane stress and large deformation, the difference of ultimate strains corresponding to diffused necking predicted by Hills theory and Swift's theory respectively is less than 2%. In practice, when it is difficult to calculate by Swifts theory, it can be replaced by Hills theory.

基金项目:
作者简介:
夏梦(1990-),女,硕士研究生
参考文献:


[1]张小龙,曹晓卿,杨琳,等. 镁合金板材热态下成形极限预测研究[J]. 锻压技术,2013,38(4):131-134.Zhang X L,Cao X Q,Yang L,et al. Forming limit diagram prediction of magnesium alloy sheet at worm condition[J]. Forging & Stamping Technology, 2013,38(4):131-134.
[2]陈劼实,周贤宾.板料成形极限的理论预测与数值模拟研究[J].塑性工程学报,2004, 11(1):13-17.Chen J S,Zhou X B. Research on theoretical prediction and numerical simulation of forming limit of sheet[J]. Journal of Plasticity Engineering,2004, 11(1):13-17.
[3]Liang X. Localization conditions and diffused necking for damage plastic solids[J]. Engineering Fracture Mechanics, 2010, 77(8):1203-1378.
[4]Hill R. On uniqueness and stability in the theory of finite elastic strain[J].Journal of the Mechanics and Physics of Solids, 1957, 5(4): 229-241.
[5]Swift H W. Plastic instability under plane stress[J].Journal of the Mechanics and Physics of Solids, 1952, 1(1): 1-18.
[6]Belytschko T, Liu W K, Moran B, et al. Nonlinear Finite Elements for Continua and Structures[M]. Chichester,UK:John Wiley & Sons, 2013.
[7]张丁非,戴庆伟,胡耀波,等. 塑性损伤的发展与应用[J]. 材料工程,2011,(1):92-98.Zhang D F,Dai Q W,Hu Y B,et al. Development and Application of ductile damage[J].Materials Engineering, 2011,(1):92-98.
[8]Lemaitre J,Desmorat R. Engineering Damage Mechanics[M]. Berlin: Springer, 2005.
[9]Altmeyer G. Modélisation théorique et numérique des critères dinstabilité plastique: application à la prédiction des phénomènes de striction et de localisation lors dopérations de mise en forme par emboutissage[D]. France: ENSAM, 2011.Altmeyer G. Theoretical and Numerical Modeling of Plastic Instability Criteria: Application to the Prediction of Necking and Localization During Stamping[D]. France: ENSAM, 2011.
[10]Haddag B. Contribution à la mise en forme des tles métalliques : application au retour élastique et à la localisation[D]. France: ENSAM, 2007.Haddag B. Contribution to the Shaping of Sheet Metal: Application to Springback and Localization[D]. France: ENSAM, 2007.
[11]王辉. 成形极限图的获取方法与其在金属板料成形中的应用[D]. 南京:南京航空航天大学,2011.Wang H. Acquisition Method of Forming Limit Diagram and its application in Sheet Metal Forming[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9