网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
690合金铸锭和锻件的镦粗过程数值模拟
英文标题:umerical simulation of upsetting process for alloy 690 cast ingot and forged billet
作者:王珏1 2 梅莹2 
单位:1.江苏省先进结构材料与应用技术重点实验室 2. 南京工程学院 
关键词:镦粗 柱状晶 690合金 数值模拟 
分类号:
出版年,卷(期):页码:2015,40(10):5-11
摘要:

利用单向压缩实验分别获得了以柱状晶和等轴晶为初始组织的690合金高温流变曲线,并将其导入Deform有限软件中,模拟了两种状态下合金的锻造镦粗工艺过程,重点对比了原始组织对镦粗峰值载荷的影响。结果表明:铸态和锻态690合金在热压缩过程中均发生了动态再结晶,在相同变形条件下,锻态合金再结晶比例大。镦粗过程中的峰值载荷随锻压速度的增大和坯料预热温度的减小而升高,且一般情况下铸态合金的峰值载荷更大。两种合金不同温度下应变速率敏感因子的差别导致了二者镦粗峰值载荷随工艺参数变化的规律不同。

True stress-true strain curves of alloys 690 with coarse columnar grains and hexagonal grains were obtained by hot compression tests and implemented into the finite element (FE) simulator. The upsetting processes of the two alloys were simulated by FE software Deform. The influences of original organizations of both cast ingot and forged billet on calculated maximum load during upsetting process were compared. The results show that dynamic recrystallization (DRX) appears during the compression tests of the two alloys 690 with different initial microstructures. DRX fraction is larger in forged billet than in cast ingot under the same deformation parameters. In the numerical simulation, the maximum load increases with the rise of forging speed and reduction of preheating temperature, and is generally larger in cast ingot alloy. Furthermore, the disparities of strain rate sensitivity factors at various temperatures of the two alloys result in the different regularities of the maximum load with the changing forging parameters.

基金项目:
国家自然科学基金青年科学基金资助项目(513010 85); 南京工程学院引进人才科研启动基金项目(YKJ201305)
作者简介:
王珏(1985-),男,博士,讲师
参考文献:

[1]Wang J, Dong J X, Zhang M C, et al. Hot working characteristics of nickel-base superalloy 740H during compression[J]. Materials Science and Engineering A, 2013, 566: 61-70.

[2]Venkatesh V, Rack H J. Elevated temperature hardening of INCONEL 690[J] Mechanics of Materials, 1998,30: 69-81.

[3]Wang L, Liu F, Cheng J J, et al. Hot deformation characteristics and process map analysis for nickel-based corrosion resistant alloy[J]. Journal of Alloys and Compounds, 2015, 623: 69-78.

[4]Bi Z N, Zhang M C, Dong J X, et al. A new prediction model of steady state stress based on the influence of the chemical composition for nickel-base superalloys[J]. Materials Science and Engineering A, 2010, 527: 4373-4382.

[5]Semiatin S L, Weaver D S, Fagin P N, et al. Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material[J] Metallurgical and Materials Transactions A, 2004, 35A: 679-693.

[6]Weaver D S, Semiatin S L. Recrysallization and grain-growth behavior of a nickel-base superalloy during multi-hit deformation[J]. Scripta Materialia, 2007, 57: 1044-1047.

[7]杨亮, 董建新, 张麦仓. 690合金高温变形行为与动态再结晶模型[J]. 稀有金属材料与工程, 2012, 41(4): 727-732.Yang L, Dong J X, Zhang M C. Deformation behavior and dynamic recrystallization model for 690 alloy at elevated temperature[J]. Rare Metal Materials and Engineering, 2012, 41(4): 727-732.

[8]Prasad Y V R K, Srinivasan N. Hot working characteristics of nimonic75, 80A and 90 superalloys: a comparison using processing maps[J]. Journal of Materials Processing Technology, 1995, 51: 171-192.

[9]Jafari M, Najafizadeh A. Correlation between Zener-Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel[J]. Materials Science and Engineering A, 2009, 501: 16-25.

[10]Jonas J J, Quelennec X, Jinag L, et al. The Avrami kinetics of dynamic recrystallization[J]. Acta Materialia, 2009, 57: 2748-2756.

[11]东赟鹏, 王超渊, 宋晓俊,等. GH5188合金流变行为研究[J]. 锻压技术, 2013, 38(6): 116-121.

Dong Y P, Wang C Y, Song X J, et al. Study on plastic deformation behavior of GH5188 superalloy[J]. Forging & Stamping Technology, 2013, 38(6): 116-121.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9