网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高电位Mg-Mn牺牲阳极挤压模具设计和工艺研究
英文标题:Study on design of extruded mold and extrusion process of wrought Mg-Mn magnesium sacrificial anode
作者:侯军才 
单位:陕西理工学院 
关键词:分流孔  焊合室形状  挤压速度  电化学性能  显微组织  Mg-Mn 牺牲阳极 
分类号:
出版年,卷(期):页码:2015,40(10):106-111
摘要:

本文设计了高电位Mg-Mn 牺牲阳极挤压模具,研究了挤压工艺参数对阳极表面成形和电化学性能的影响。挤压模具的主要设计参数为:3孔中心对称分流,分流孔具有锥度,分流孔的始端分流比为16,尾部的分流比为27.5,分流桥的中心设置钢芯挤出孔,焊合室的形状为圆柱形,焊合室的高度为30 mm,定径带长度为25 mm。试验结果表明,所设计的平面分流模具能够满足挤压内部镶嵌钢芯Mg-Mn牺牲阳极的要求。Mg-Mn阳极的挤压比在3.25~29.15范围内时,阳极表面质量良好,形状误差满足阳极的使用要求。挤压变形使杂质相分布更均匀,降低了阳极不均匀腐蚀的程度,使阳极的电流效率和开路电位相对于铸态阳极显著提高。
关键词:分流孔; 焊合室形状; 挤压速度; 电化学性能; 显微组织; Mg-Mn 牺牲阳极

Extrusion mould was designed for the high potential Mg-Mn sacrificial anode and the effects of process parameters on surface quality and electrochemical properties of the Mg-Mn anodes were also investigated. The main structural parameters were three tapered divergent orifices symmetrically distributed, the divergent ratio of the start and the butt of 16 and 27.5 respectively, steel core extrusion orifices set on the center of the divergent bridge, cylindrical seam room and the height of 30 mm, and the working band of 25 mm. The results show that the plain divergent mould is well designed for extruding the Mg-Mn sacrificial anode with inner steel core. When the extrusion ratio is ranging from 3.25 to 29.15, better surface quality can be obtained and the shape error can meet the standard for sacrificial anode. The phases formed by impurity elements can be more homogeneously distributed after extrusion deformation decreasing the extent of localized corrosion, resulting in that the current efficiency and open potential are dramatically increased compared to the as-cast anode.

基金项目:
陕西省科技厅科技基金资助项目(2011JE009);陕西省教育厅科技基金资助项目 (12JS034)
作者简介:
侯军才(1980-),男,博士,讲师
参考文献:

[1]Parthiban G T, Parthiban T, Ravi R, et al. Cathodic protection of steel in concrete using magnesium alloy anode [J].Corrosion Science, 2008,50:3329-3335.

[2]侯军才, 张秋美. Mg-Mn高电位镁牺牲阳极的腐蚀行为[J]. 特种铸造及有色合金, 2012, 32(10): 886-889.

Hou J C, Zhang Q M. Corrosion behavior of high potential Mg-Mn sacrificial anode [J]. Special Casting & Nonferrous Alloys, 2012, 32(10):886-889.

[3]范洪富, 梁涛, 赵克辉. 用镁牺牲阳极防三相分离器内壁腐蚀的研究[J]. 材料保护, 2006, 39(12):55-57.

Fan H F, Liang T, Zhao K H. Application of sacrificing magnesium anode in corrosion protection of inner wall of triphase seperator used in natural gas field[J]. Materials Protection, 2006, 39(12) :55-57.

[4]王保贝, 刘根太, 张承典, 等. 带状镁基牺牲阳极及其应用[J]. 腐蚀与防护, 2002, 23(4): 159-161.

Wang B B, Liu G T, Zhang C D, et al. Magnesium ribbon sacrificial anode and its applications [J].Corrosion Protection, 2002, 39(12):159-161.

[5]宋曰海.高性能铝锌镁合金系列牺牲阳极材的研究[D].昆明:昆明理工大学, 2003.

Song Y H. Studies on High Properties Sacrificial Anode Materials based on Aluminum, Zinc and Magnesium [D]. Kunming: Kunming University of Technology, 2003.

[6]高佳伟, 邢琳琳, 唐德志, 等. 牺牲阳极形状对其服役性能的影响[J]. 腐蚀与防护, 2015,36(3) :289-293.

Gao J W, Xing L L, Tang D Z, et al. Effect of the cross section shape on the performance of sacrificial anode [J]. Corrosin & Protection, 2015,36(3) :289-293.

[7]Andrei M, Gabriele F D, Bonora P L. Corrosion behavior of magnesium sacrificial anodes in tap water [J].Materials and Corrosion, 2003, 54(5):5-11.

[8]黄东男, 李静媛, 谢建新. 模具结构对AZ91 镁合金挤压成形性能的影响[J]. 塑性工程学报, 2009, 16(4): 105-110.

Huang D N, Li J Y, Xie J X. The influence of die structure on the extrusion ablity of AZ91 magnesium alloy [J]. Journal of Plasticity Engineering, 2009, 16(4) :105-110.

[9]陆国桢, 王强, 张治民, 等. 镁合金挤压成形技术的研究进展[J]. 热加工工艺, 2012,41(15): 86-89.

Lu G Z, W Q, Zhang Z M, et al. Research and development on extrusion forming technology of magnesium alloy [J]. Hot Working Technology, 2012, 41(15):86-89.

[10]刘静安. 镁及镁合金的特性与挤压工艺特点[J]. 轻合金加工技术, 2011, 39(5):43-48.

Liu J A. Characteristics and extrusion technology of magnesium and its alloy [J]. Light Alloy Fabrication Technology, 2011,39(5):43-48.


[11]石磊, 李继文, 李永兵, 等. AZ31 镁合金的热挤压变形和力学性能分析[J].锻压技术, 2009, 34(6): 32-34.

Shi L, Li J W, L Y B, et al. Hot extrusion deformation of AZ31 magesium alloy and mechanics performance analysis [J]. Forging & Stamping Technology, 2009, 34(6):32-34.

[12]杨俊英,高飞,宁海石. 加热温度对AZ31镁合金连续挤压组织与性能的影响[J]. 锻压技术, 2014, 39(5):106-111.

Yang J Y, Gao F, N H S. Effect of heating temperature on microstructure and properties of AZ31 magnesium alloy in conform process [J]. Foring & Stamping Technology, 2014, 39(5):106-111.

[13]GB/T17731—2004,镁合金牺牲阳极[S].

GB/T 17731—2004,Magnesium alloy sacrificial anode [S].

[14]ASTM G97—1997,Standard test method for laboratory evaluation of magnesium sacrificial andode test specimens for underground applications [S].

[15]Kim J G, Joo J H, Koo S J. Development of high-driving potential and high-efficiency Mg-based sacrificial anodes for cathodic protection[J].Journal of Materials Science Letters, 2000, (9) :477-479.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9