[1]黄玉萍,王波,邓兆虎,等 遗传算法结合神经网络实现拉延筋优化设计[J]. 锻压技术,2007,32(5):138-141.
Huang Y P, Wang B, Deng Z H, et al. Optimized design of drawbead using improved genetic algorithm combined with BP artificial neural network [J]. Forging & Stamping Technology, 2007,32(5):138-141.
[2]杨景明,顾佳琪,闫晓莹,等. 基于改进遗传算法优化BP网络的轧制力预测研究[J]. 矿冶工程,2015,(1):111-115.
Yang J M, Gu J Q, Yan X Y, et al. Rolling force prediction based on BP network optimized by an improved genetic algorithm[J]. Mining and Metallurgical Engineering, 2015,(1):111-115.
[3]张俊明,刘军,俞晓峰,等. 轧制力预测中RBF神经网络的组合应用[J]. 钢铁研究学报,2008,(2):33-36.
Zhang J M,Liu J,Yu X F, et al. Application of combination of RBF neural network to prediction of rolling force[J]. Journal of Iron and Steel Research,2008,(2):33-36.
[4]刘杰辉,武杰,王桂梅. 基于灰色理论的非圆截面零件加工切削力的预测[J]. 煤矿机械,2013,(2):129-130.
Liu J H, Wu J, Wang G M. Based on grey system theory of non-circular machining cutting force prediction [J]. Coal Mine Machinery, 2013,(2):129-130.
[5]Dixit U S, Chandra S. A neural network based methodology for the prediction of roll force and roll torque in fuzzy form for cold flat rolling process[J]. The International Journal of Advanced Manufacturing Technology, 2003,2211:883-889.
[6]邱红雷,胡贤磊,矫志杰,等. 中厚板轧制过程中高精度的轧制力预测模型[J]. 钢铁,2005,(5):49-53.
Qiu H L, Hu X L, Jiao Z J, et al. High precision rolling force prediction model for plate rolling[J]. Iron and Steel,2005,(5):49-53.
[7]Johannes Lohmar,Markus Bambach,Gerhard Hirt,et al. The precise prediction of rolling forces in heavy plate rolling based on inverse modeling techniques[J]. Steel Research Int.,2014,8511:1525-1532.
[8]王智,谢延敏,胡静,等. 基于改进灰色神经网络模型的板料成形缺陷预测研究[J]. 中国机械工程,2013,26(22):3075-3079.
Wang Z, Xie Y M, Hu J, et al. Research on defect prediction in sheet metal forming based on improved gray neural neural network model[J]. China Mechanical Engineering,2013,26(22):3075-3079.
|