网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于ANSYS Workbench的超声振动系统设计与优化
英文标题:Design and optimization of ultrasonic vibration system based on ANSYS Workbench
作者:解振东 管延锦 朱立华 姜良斌 仲崇凯 
单位:山东大学 
关键词:ANSYS Workbench 超声振动系统 模拟分析 
分类号:TH122
出版年,卷(期):页码:2015,40(11):52-57
摘要:
超声振动系统传统的设计方法普遍存在计算量大且精度不高的缺陷。在设计过程中引用有限元分析软件ANSYS Workbench对换能器、变幅杆和工具头等进行静力、模态、谐响应的模拟分析,得出了各部分最大、最小的位移和应力值出现的部位以及谐振频率的大小,对不合理的设计尺寸进行优化和修正。最终确定了换能器的尺寸和预紧力大小,变幅杆放大系数为2.36,阻抗为8 Ω;工具头放大系数为1.27,端面最大振幅为5.5 μm。将设计的超声振动系统应用到超声辅助振动拉伸、压缩试验中,当载荷为10 kN时,振幅为5.4 μm,仅衰减1.8%。
Many disadvantages such as large computing and low precision existed in the traditional design method of ultrasonic vibration system. It was analyzed static force, modal and harmonic response of the energy transduced, amplitude transformer and tool head by the finite element simulation software ANSYS Workbench. The positions of both the minimum and the maximum displacements and stresses and the values of frequency were obtained, and the irrational dimensions were revised and optimized. Finally, the size of the energy transducer and prestressing force were determined. The amplification coefficient of amplitude transformer is 2.36, and the impedance of amplitude transformer is 8 Ω. The amplification coefficient of the tool head is 1.27, and the maximum amplitude of end face of tool head is 5.5 μm. The designed ultrasonic vibration system is applied in the ultrasonic tensile and compression tests, and when the loading is 10 kN, the amplitude is 5.4 μm, which drops by 1.8% only. 
基金项目:
国家自然科学基金资助项目(51375269)
作者简介:
解振东(1987-),男,博士研究生 管延锦(1969-),男,博士,教授
参考文献:


[1]何勍, 闻邦椿. 振动塑性加工的进展及若干问题[J]. 辽宁工学院学报, 1999, 19(4): 5-9.He Q, Wen B C. The problems and progress of vibration plastic processing [J]. Journal of Liaoning Institute of Technology, 1999, 19(4): 5-9.
[2]赵升吨, 李泳峄, 范淑琴. 超声振动塑性加工技术的现状分析[J]. 中国机械工程, 2013, 24(6): 835-840.Zhao S D, Li Y Y, Fan S Q. Status analysis of plastic processing technology with ultrasonic vibration [J]. China Mechanical Engineering, 2013, 24(6): 835-840.
[3]刘新忠, 孟永钢,苗金鱼. 超声波在塑性加工中的应用研究[J]. 锻压技术, 1998, 26(5): 12-15.Liu X Z, Meng Y G, Miao J Y. Application of ultrasonic wave in plastic processing [J]. Forging & Stamping Technology, 1998, 26(5): 12-15.
[4]杨枫, 申昱,曹常印,等. 基于超声振动的纯钛TA1板材的成形性能[J]. 塑性工程学报, 2014, 21(4): 42-46.Yang F, Shen Y, Cao C Y,et al. Research on forming performance of TA1 subjected to ultrasonic vibration [J]. Journal of Plasticity Engineering, 2014, 21(4): 42-46.
[5]Amir Siddiq, Tamer EI Sayed. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations[J]. Ultrasonics, 2012, 52: 521-529.
[6]Guangping Zhou. The performance and design of ultrasonic vibration system for flexural mode[J]. Ultrasonics, 2000, 38(10): 979-984.
[7]韩丽轩, 于保华, 胡小平. 功率超声压电换能器阻抗匹配电路参数化设计[J]. 压电与声光, 2015, 34(4): 713-717.Han L X, Yu B H, Hu X P. Parametric design of impedance matching circuit for power ultrasonic piezoelectric transducer [J]. Piezoelectrics & Acoustooptics, 2015, 34(4): 713-717.
[8]Huang Shibiao, Yu Baohua, Hu Xiaoping. The design and finite element analysis for the ultrasonic amplitude transformer bar [A]. Proceedings of International Technology and Innovation Conference 2006 (ITIC 2006) [C]. Hangzhou, 2006.
[9]王维鸽, 贺西平. 超声纵振动空心变幅杆的特性[J]. 陕西师范大学学报:自然科学版, 2015, 43(4): 43-47.Wang W G, He X P. Study on the different shapes of ultrasonic horn with a central hole[J]. Journal of Shanxi Normal University:Natural Science Edition, 2015, 43(4): 43-47.
[10]Hornisova K, Billik P. Some properties of horn equation model of ultrasonic system vibration and of transfer matrix and equivalent circuit methods of its solution [J]. Ultrasonics, 2014, 54(1): 330-342.
[11]林书玉. 大振幅纵-扭复合振动模式超声变幅杆[J]. 电与声光, 2002, 24(10): 81-84.Lin S Y. Longitudinal-torsional composite mode exponential ultrasonic horns with large amplitude [J]. Piezoelectrics & Acoustooptics, 2002, 24(10): 81-84.
[12]丁毓峰. ANSYS 12.0有限元分析完全手册[M]. 北京: 电子工业出版社, 2011.Ding Y F. ANSYS 12.0 Finite Element Analysis Full Manual [M]. Beijing: Publishing House of Electronics Industry, 2011.
[13]李彬, 李亚, 孟鑫, 等. 超声变幅杆参数化优化设计研究[J]. 机械设计与制造, 2003, (11): 60-63.Li B, Li Y, Meng X, et al. Study on parametric design and optimal design of ultrasonic amplitude horn[J]. Machinery Design & Manufacture, 2003, (11): 60-63.
[14]贺西平, 谢歆鑫. 后置螺栓对换能器性能参数的影响[J]. 陕西师范大学学报, 2009, 37(2): 42-47.He X P, Xie X X. Effect of rear bolt on the performance parameters of transducer [J]. Journal of Shanxi Normal University, 2009, 37(2): 42-47.
[15]林仲茂. 超声变幅杆的原理和设计[M]. 北京: 科学出版社, 1987.Lin Z M. The Principle and Design of Ultrasonic Horns[M]. Beijing: Science Press, 1987.
[16]张可昕, 张向慧, 高炬. 带有加工工具的超声复合变幅杆的优化设计[J]. 机械设计与制造, 2011, (11): 33-35.Zhang K X, Zhang X H, Gao J. Ptimum design of acoustic horns with tool for ultrasonic machining using finite-element analysis [J]. Machinery Design & Manufacture, 2011, (11): 33-35.
[17]刘展. ABAQUS6.6接触教程与实例详解[M]. 北京: 北京水利水电出版社, 2008.Liu Z. ABAQUS6.6 Beginners Tutorial and Example Explanation [M]. Beijing: China Water Power Press, 2008.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9