网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ti-6Al-4V合金多道次温轧过程中微观组织对力学性能的影响
英文标题:Influence of microstructure on mechanical properties during multi-pass warm rolled Ti-6Al-4V
作者:凌敏 
单位:贵州理工学院 
关键词:Ti-6Al-4V合金 温轧 微观组织 力学性能 织构 
分类号:TG304
出版年,卷(期):页码:2015,40(11):127-131
摘要:
通过多道次温轧工艺,在650,700和750 ℃下成功制备出直径为Φ12 mm、长为数米的高强度超细晶Ti-6Al-4V合金棒材。研究结果表明,轧制温度为650 ℃时Ti-6Al-4V合金棒材具有最佳的力学性能,屈服强度和抗拉强度分别为1200和1300 MPa,伸长率为10%。通过光学显微镜、电子背散射衍射和X-射线衍射对变形过程中的合金微观组织和织构演变进行了观测。结果显示,温轧后的超细晶组织及α和β相对提高合金的力学性能有重要的作用,表明多道次温轧工艺可以有效地节约小尺寸棒材的生产成本和时间,从而提高效益。
High strength bulk ultrafine-grained titanium alloy Ti-6Al-4V bars with 12 mm diameter and several meters long were successfully produced by multi-pass warm rolling at different temperatures (650, 700 and 750 ℃). The research shows that when the rolling temperature is 650 ℃,Ti-6Al-4V bars is of the best mechanical properties, namely, the yield strength is 1200 MPa, the tensile strength is 1300 MPa, and the elongation is 10%. The alloys microstructure and its evolution process in the forming were observed by optical microscopy, electron back scattered diffraction (EBSD) and X-ray diffraction. The result shows that the ultra fine-grained microstructure and the morphology of α and β phases after the warm rolling play an important role in improving alloys mechanical properties. Further, the cost and time of small diameter bar products can be saved by multi-pass warm rolling, and the efficiency can be improved. 
 
基金项目:
贵州理工学院自然科学基金资助项目(XJZK20130807)
作者简介:
凌敏(1981-),女,硕士,副教授
参考文献:


[1]洪权. Ti-6Al-4V合金薄板包覆叠轧加工工艺与组织性能研究[D].西安:西北工业大学,2005.Hong Q. Effects of Pack Ply-rolling Process on Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Sheets[D]. Xi'an: Northwestern Polytechnical University, 2005.
[2]Valiev R Z, Korznikov A V, Mulyukov R R. Structure and properties of ultrafine-grained materials produced by severe plastic deformation[J]. Materials Science and Engineering A, 1993, 168:141-148.
[3]郭炜, 王渠东.大塑性变形制备超细晶复合材料的研究进展[J]. 锻压技术,2010,35(1):4-8. Guo W, Wang Q D. Research progress of fabricating ultrafine-grained composites by severe plastic deformation [J]. Forging & Stamping Technology, 2010, 35(1):4-8.
[4]路君,靳丽,曾小勤,等. 大塑性变形材料及变形机制研究进展[J]. 铸造工程,2008,(1):32-38. Lu J, Jin L, Zeng X Q, et al. Deformation mechanism of severe plastic deformation alloy [J]. Foundary Engineering, 2008, (1):32-38.
[5]Somjeet Biswas, Satyam Suwas. Evolution of sub-micron grain size and weak texture in magnesium alloy AM30 by multi axial forging-effect on mechanical properties [J].Scripta Materialia, 2012, 66: 89-92.
[6]Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process [J]. Acta Materialia, 1999,47:579-583.
[7]Kumar P, Gurao N P, Haldar A, et al. Texture and microstructural evolution in pearlitic steel during triaxial compression [J]. Metallurgical and Materials Transactions A, 2012, 43: 2043-2055.
[8]Hao Y L, Zhang Z B, Li S J, et al. Microstructure and mechanical behavior of a Ti-24Nb-4Zr-8Sn alloy processed by warm swaging and warm rolling [J].Acta Materialia, 2012, 60:2169-2177.
[9]Zhang Z B,Hao Y L, Li S J, et al. Fatigue behavior of ultrafine-grained Ti-24Nb-4Zr-8Sn multifunctional biomedical titanium alloy [J].Materials Science and Engineering A, 2013,7: 225-233.
[10]韩雄伟,  杨金凤, 冷祯龙. ECAE处理钛合金数值分析研究[J]. 锻压技术,2013,38(5):185-193.Han X W, Yang J F, Leng Z L. Numerical analysis of titanium alloy processed by ECAE [J]. Forging & Stamping Technology, 2013,38(5):185-193.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9