网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于非弹性回复的先进高强板回弹研究
英文标题:Research on springback of advanced high-strength-steel plate based on non-elastic recovery
作者:杨蕊 
单位:东北石油大学 
关键词:先进高强板 非弹性回复 弹性模量 材料本构 回弹仿真 
分类号:TG386
出版年,卷(期):页码:2015,40(12):35-42
摘要:

针对先进高强钢卸载时存在的明显非弹性回复的情况,从能量角度深入分析非弹性回复现象的机理,考虑加载-卸载过程的非弹性回复应变并引入双屈服面理论,建立一种考虑塑性预应变及卸载应力变化的卸载弹性模量模型本构来进行回弹仿真预测。并以某梁类零件为例,对比了新卸载弹性模量本构、Yoshida本构、常规弹性模量本构等的回弹仿真结果与试验结果的区别。研究结果表明:非弹性回复应变具有可逆性与消耗能量的特点,是引起非弹性回复行为的主要原因;新的材料本构模型回弹仿真结果与试验值吻合较好,对比其它模型仿真结果其精度有所提高。

Considering the obvious non-elastic recovery phenomenon of advanced high strength steel plate after unloading, its principle was analyzed deeply from energy aspect, and based on the pre-plastic strain and unload elastic modulus, the material constitutive model was set up to simulate and predict the spring by the theory of non-elastic recovery strain with two-yield-surface in the loading-unloading process. For the beam-type parts,    it was compared the differences of the experimental results with the springback simulation results, which were obtained by the new unload elastic modulus constitutive, Yoshida constitutive and conventional elastic modulus constitutive. Research results show that the non-elastic recovery strain is of the characteristics of reversibility and energy consumption, and it is the most important reason of non-elastic recovery phenomenon. Furthermore, the results of springback simulation obtained by the new material constitutive model are in good agreement with the experimental results, and the accuracy of the springback simulation is improved comparing with that of other models.

基金项目:
作者简介:
作者简介:杨蕊(1982-),女,博士研究生,讲师
参考文献:


[1]Wagoner R H, Hojun Lim, Myoung-Gyu Lee. Advanced issues in springback[J]. International Journal of Plasticity,2013,45:3-20.
[2]Kim Hyunjin, Kim Chongmin, Barlat, et al. Nonlinear elastic behaviors of low and high strength steels in unloading and reloading[J]. Materials Science and Engineering: A, 2013, 562(1):161-171.
[3]Sergio Fernando Lajarin, Paulo V P Marcondes. Influence of computational parameters and nonlinear unloading behavior on springback simulation[J]. Springer,2013, 35:123-129.
[4]Cleveland R M, Ghosh A K. Inelastic effects on springback in metals[J]. International Journal of Plasticity, 2002,18:769-785.
[5]Yang M, Akiyama Y, and Sasaki T. Evaluation of change in material properties due to plastic deformation[J].Journal of Materials Processing Technology, 2004, 151: 232-236.
[6]Perez R, Benito J A, and Prado J M. Study of the inelastic response of TRIP steels after plastic deformation[J]. Isij International,2005, 45:1925-1933.
[7]Pavlina E J, Levy B S, Van Tyne C J, et al. The unloading modulus of akdq steel after uniaxial and near plane-strain plastic deformation[J]. International Journal of Modern Physics B, 2008,22:6070-6075.
[8]余海燕,鲍立,高云凯.相变诱发塑性钢板的非弹性回复行为及其对回弹的影响[J].机械工程学报,2010,46(18):46-51.Yu H Y,Bao L,Gao Y K. Inelastic recovery behavior of transformation-induced plasticity steels and its influence on springback[J]. Journal of Mechanical Engineering,2010,46(18): 46-51.
[9]Luo L M, Ghosh A K. Elastic and inelastic recovery after plastic deformation of DQSK steel sheet[J]. Journal of Engineering Materials and Technology-Transactions of the Asme,2003, 125: 237-246.
[10]Eggertsen P A, Mattiasson K. On constitutive modeling for springback analysis[J]. International Journal of Mechanical Sciences,2010,52(6): 804-818.
[11]Halilovic M, Vrth M, Stok B. Prediction of elastic strain recovery of a formed steel sheet considring stiffness degradation[J]. Meccanica, 2009, 44(3):321-338.
[12]Zhou A G, Barsoum M W. Kinking nonlinear elastic deformation of Ti3AlC2, Ti2AlC, Ti3Al (C-0.5, N-0.5)(2) and Ti2Al (C-0.5, N-0.5) [J]. Journal of Alloys and Compounds,2010,498: 62-70.
[13]Liu Y L,Zhu  Y X, Dong W Q, et al. Springback prediction model considering the variable youngs modulus for the bending rectangular 3a21 tube[J]. Journal of Materials Engineering and Performance,  2013, 22(1): 9-16.
[14]Dudescu C, Naumann J,Stockmann  M, et al. Investigation of non-linear springback for high strength steel sheets by ESPI[J]. Strain,2011,47: 8-18.
[15]Jinwoo Lee, JeongYeon Lee, Frédéric Barlat,et al. Extension of quasi-plastic-elastic approach to incorporate complex plastic flow behavior-application to springback of advanced high-strength steels[J].International Journal of Plasticity,2013, 45:140-159.
[16]Youhe Zhou. A theoretical model of collision between soft-spheres with Hertz elastic loading and nonlinear plastic unloading[J].Theoretical and Applied Mechanics Letters,2011, 1(4): 41006-41011.
[17]Morestin F, Boivin M. On the necessity of taking into account the variation in the Young modulus with plastic strain in elastic-plastic software[J]. Nuclear Engineering and Design, 1996, 162:107-116.
[18]Wagoner R H, Wang J F, Li M. Vol 14B Metalworking: Sheet Forming in ASM Handbook[M].Material Park:ASM International,2006.
[19]Yoshida F, Uemori T, Fujiwara K. Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain[J]. International Journal of Plasticity,  2002, 18: 633-659.
[20]Lee M G, Kim D,Wagoner R H, et al. A practical two-surface plasticity model and its application to spring-back prediction[J]. International Journal of Plasticity, 2007,(23):1189-1212.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9