网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
304不锈钢壳变薄拉深的组织结构与性能
英文标题:Microstructure and properties of stainless steel shell 304 in the ironing process
作者:白建雄 陈先朝 王江南 杨元政 谢致薇 肖小亭 
单位:广东工业大学 
关键词:304不锈钢壳 变薄拉深 组织结构 显微硬度 残余应力 
分类号:
出版年,卷(期):页码:2016,41(1):32-37
摘要:

借助X射线衍射、显微组织、维氏硬度和切环残余应力分析研究了304不锈钢壳各道次变薄拉深制件的组织结构与性能。结果表明:随着304不锈钢壳变形变薄量的增加,直壁形变诱发α′马氏体转变量增加,变薄拉深后最终α′马氏体相占主导地位,无hcp结构ε马氏体的形成;显微组织呈现出晶粒越细长,板条状马氏体越多,在第三道变薄拉深后板条马氏体呈现一定的方向性,晶粒被拉长为纤维状组织;硬度从323.7 HV增加到400.8 HV;从落料拉深到第一道变薄拉深制件直壁的残余应力降低了48.5%,但后续的第二道和第三道变薄拉深后,其残余应力增幅分别为23%、16.7%。随着拉深成形的进行,304不锈钢壳强度增加,塑性降低,切向残余应力也逐渐增大,可能出现掉底、纵向开裂等缺陷,因此工艺设计时应严格控制变形量和拉深道次。

 Microstructure and properties of stainless steel shell 304 for each-stage ironing were studied by means of XRD, microstructure, Vivtorinox hardness, cutting ring residual stress. The results show that, with the increasing amount of deformation and thinning, the deformation on the cylinder wall induces α′-martensite to increase quickly. The α′-martensite phase is dominant after ironing without the hcp structure of ε-martensite. The more elongate in microstructure of grains shows, the more lath martensite is. After the third-stage ironing, lath martensite presents a certain direction, and the grains are elongated as fibrous tissue. The hardness on the vertical wall increases from 323.7 HV to 400.8 HV. Tangential residual stress of the parts decreases by 48.5% from the deep drawing to the first-stage ironing. But the second-stage ironing and the third-stage ironing increase in the tangential residual stress up to 23%, 16.7% respectively. With the deep drawing of the stainless steel shell 304, the strength increases, the ductility decreases, and the tangential residual stress increases gradually. The defects including bottom off and longitudinal crack are likely to happen. So the degree of deformation and the amount of drawing passes should be strictly controlled in the process design.

基金项目:
广东省战略性新兴产业项目(2012A090100014)
作者简介:
白建雄(1990-),男,硕士研究生
参考文献:

[1]李立碑, 孙玉福. 金属材料物理性能手册[M]. 北京:机械工业出版社, 2012.

Li L B, Sun Y F. Metal Physical Performance Handbook[M]. Beijing: China Machine Press,2012.

[2]邓明, 李庆.不锈钢成形分析和防止拉深缺陷的对策[J].锻压技术, 2006, 31(5): 121-124.

Deng M, Li Q. Analysis of stainless steel sheet forming and preventive measures for the defects in deep-drawing[J]. Forging & Stamping Technology, 2006, 31(5) : 121-124.

[3]Irthiea I, Green G, Hashim S, et al. Experimental and numerical investigation on micro deep drawing process of stainless steel 304 foil using flexible tools[J]. International Journal of Machine Tools and Manufacture, 2014, 76(1):21-33.

[4]Chi-Han Chen, Jenn-Terng Gau, Rong-Shean Lee. An experimental and analytical study on the limit drawing ratio of stainless steel 304 foils for microsheet forming[J]. Materials and Manufacturing Processes, 2009, 24: 1256-1265.

[5]孟庆当. 304不锈钢薄板微冲压成形中尺寸效应的研究[D]. 上海: 上海交通大学, 2012.

Meng Q D. An Investigation on Size Effects of 304 Stainless Steel Foils in Microforming Processes[D]. Shanghai: Shanghai Jiao Tong University, 2012.

[6]Lade Jayahari, Balu Naik Banoth, Amit Kumar Gupta, et al. Metallurgical studies of austenitic stainless steel 304 under warm deep drawing[J]. Journal of Iron and Steel Research, 2014, 21(12): 1147-1151.

[7]Lade Jayahari, B Balu Naik, Swadesh Kumar Singh. Effect of process parameters and metallographic studies of ASS-304 stainless steel at various temperatures under warm deep drawing[J]. Procedia Materials Science, 2014, 6: 115-122.

[8]Ethiraj N, Senthil Kumar V S. Finite element method based simulation on warm deep drawing of AISI304 steel circular cups[J]. Procedia Engineering, 2012, 38: 1836-1851.

[9]Bong H J, Barlat F, Ahn D C, et al. Formability of austenitic and ferritic stainless steels at warm forming temperature[J]. International Journal of Mechanical Sciences, 2013, 75(10):94-109.

[10]Jayahari L, Sasidhar P V, Prudvi Reddy P, et al. Formability studies of ASS 304 and evaluation of friction for Al in deep drawing setup at elevated temperatures using LS-DYNA[J]. Journal of King Saud University - Engineering Sciences, 2014, 26: 21-31.

[11]白建雄, 陈先朝, 肖小亭,等.304不锈钢壳级进模变薄拉深工艺及数值模拟[J]. 锻压技术, 2015, 40(1):33-37.

Bai J X, Chen X C, Xiao X T, et al. Ironing process with progressive die for 304 stainless steel shell and its numerical simulation[J]. Forging & Stamping Technology, 2015,40(1):33-37.

[12]杨卓越, 王建, 陈嘉砚. 304奥氏体不锈钢热诱发马氏体相变研究[J]. 材料热处理学报, 2008, 29(1):98-101.

Yang Z Y, Wang J, Chen J Y. Thermal-induced martensite transformation in 304 austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2008, 29(1):98-101.

[13]杨建国, 陈双建, 黄楠,等. 304不锈钢形变诱导马氏体相变的影响因素分析[J]. 焊接学报, 2012, 33(12):89-92.

Yang J G, Chen S J, Huang N, et al. Factors affecting deformation induced martensitic transformation of SUS304 stainless steel[J]. Transactions of the China Welding Institution, 2012, 33(12):89-92.

[14]肖良红, 向俊仲, 黎宇,等. 模具参数对304不锈钢圆筒拉深件残余应力的影响[J]. 锻压技术,2015,40(1):21-26.

Xiao L H, Xiang J Z, Li Y, et al. Influence of die parameters on residual stresses of stainless steel 304 cylindrical drawing parts[J]. Forging & Stamping Technology, 2015, 40(1):21-26.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9