[1]王淑云,李惠曲,东赟鹏,等. 大型模锻件和模锻液压机与航空锻压技术[J]. 锻压装备与制造技术, 2009, 44(5):31-34. Wang S Y, Li H Q, Dong Y P, et al. Large forging and die-forging hydraulic press and forging technology[J]. China Metal Forming Equipment & Manufacturing Technology, 2009, 44(5):31-34. [2]颜鸣皋,吴学仁,朱知寿. 航空材料技术的发展现状与展望[J]. 航空国际合作与交流,2004,(1):21-24. Yan M G, Wu X R, Zhu Z S. Recent progress and prospects for aeronautical material technologies[J]. Aeronautical International Cooperation and Exchange,2004,(1):21-24. [3]庞克昌. 热模/等温精密锻造技术的发展[J]. 上海钢研, 2005,(1):3-6.Pang K C. The development of hot die/isothermal precision forging techniques[J]. Shanghai Steel & Iron Research, 2005,(1):3-6. [4]Shen G, Furrer D. Manufacturing of aerospace forgings[J]. Journal of Materials Processing Technology, 2000, 98:189-195. [5]Williams J C. Business directions and materials challenges for the aircraft engine industry[J]. Acta Metallurgica Sinica, 1996, 9(6):407-410. [6]郭鸿镇,姚泽坤,虢迎光,等.等温精密锻造技术的研究进展[J].中国有色金属学报,2010,20(S1):570-576.Guo H Z, Yao Z K, Guo Y G, et al. Research progress of isothermal precision forging technology[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1):570-576. [7]任卫红. 摩擦自激引起的液压爬行现象分析[J]. 煤矿机械,2003,(10):43-45.Ren W H. Analyze creeping phenomenon of hydraulic by frictional self-excited vibration[J]. Coal Mine Machinery, 2003, (10):43-45. [8]于英华,徐平,刘大木. 机床低速爬行研究现状及分析[J]. 辽宁工程技术大学学报:自然科学版,2004,23(2):243-246. Yu Y H, Xu P, Liu D M. Present research situation and analysis on machine tool stick-slip motion[J]. Journal of Liaoning Technical University:Science Edition, 2004, 23(2): 243-246. [9]程俊兰,陈春明. 液压伺服系统的摩擦力分析及补偿研究[J]. 机床与液压,2006,(10):177-179.Chen J L, Chen C M. Analysis and compensation for the friction in hydraulic servo systems[J]. Machine Tool & Hydraulics, 2006, (10):177-179. [10]冯斌,梅雪松,杨军,等. 数控机床摩擦误差自适应补偿方法研究[J]. 西安交通大学学报,2013,47(11):65-69.Fen B, Mei X S, Yang J, et al. Adaptive compensation of friction error for numerical control machine tool[J]. Journal of Xi'an Jiaotong University, 2013, 47(11):65-69. [11]董志明,徐欣圻,周旺平. 大惯量超低速高精度伺服系统的H∞控制[J]. 微计算机信息,2008,24(19):19-21.Dong Z M, Xu X Q, Zhou W P. H-Infinity control for a super inertia, ultra-low speed and high precision servo system[J]. Microcomputer Information, 2008, 24(19):19-21. [12]李文坚,李毅波,潘晴. 基于LuGre模型的大型模锻装备低速摩擦补偿分析[J]. 锻压技术,2015,40(1):71-75. Li W J, Li Y B, Pan Q. Analysis on low-velocity friction compensation of large forging equipment based on LuGre-model[J]. Forging & Stamping Technology, 2015, 40(1):71-75. [13]Yao J, Jiao Z, Ma D,et al. High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties[J]. IEEE/ASME Transactions on Automatic Control, 2014, 19(2):633-641. [14]Tsuruta K, Sato K, Ushimi N, et al. Nonlinear friction compensation for a high precision stage using synchronous piezoelectric device driver[A]. IEEE International Conference on Industrial Technology[C].Australia, 2009. [15]Canudas-De-Wit C. Comments on “A new model for control of systems with friction”[J]. IEEE Transactions on Automatic Control, 1998, 43(8):1189-1190. [16]Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems[J]. IEEE Transactions on Automatic Control, 1996, 41(3):447-451. [17]Tang P, Lei Y, Song C. Research on pointing control systems with friction[J]. Procedia Engineering, 2011,(15):554-560. [18]Pomet Jean-Baptiste, Praly Laurent. Adaptive nonlinear regulation: estimation from the Lyapunov equation[J]. IEEE Transactions on Automatic Control, 1992, 37(6):729-740. [19]Tong H L, Tan K K, Huang S. Adaptive friction compensation with a dynamical friction model[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16:133-140. [20]李毅波,张猛,黄明辉,等. 模锻压机低速运行摩擦力的参数辨识与补偿控制[J]. 华南理工大学学报:自然科学版,2013,41(7):38-44. Li Y B, Zhang M, Huang M H, et al. Parameter identification and compensation control of friction for die-forging press running at low speed[J]. Journal of South China University of Technology: Natural Science Edition, 2013, 41(7):38-44.
|