网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于局部Lipschiz映射的模锻压机非线性摩擦自适应补偿
英文标题:Adaptive compensation of nonlinear friction for die-forging hydraulic press machine based on local Lipschiz projection
作者:麻鹏达 李毅波 潘晴 
单位:中南大学 
关键词:模锻压机 稳定性 自适应控制 局部Lipschiz映射 
分类号:TG315,TP211+.2
出版年,卷(期):页码:2016,41(3):73-78
摘要:

模锻压机在国防、军工行业中具有极为重要的作用。然而低速运行时的模锻压机极易出现速度不稳定、抖动、甚至爬行等现象,非线性摩擦力是造成该现象的关键因素。为提高模锻压机低速运行时的稳定性,设计了一种自适应控制方法来补偿非线性摩擦力。该控制方法是在LuGre模型的基础上,通过使用局部Lipschiz映射来更新摩擦模型的参数,并且使用双曲函数来减轻控制系统的抖振,随后定义了1个Lyapunov函数并验证了该控制方法的稳定性。Matlab/Simulink环境下的仿真结果显示,该控制方法相比于传统PID控制方法,能够提高模锻压机低速运行时的响应速度和稳定性。

Die-forging press machine (DFPM) plays a very important role in national defense and military industry. However, when DFPM runs at low speed, the phenomena such as speed fluctuation, jitter and even crawling always appear due to the nonlinear friction. To improve the stability of DFPM under a low speed, a new kind of adaptive control method to compensate the nonlinear friction was designed. Based on LuGre model, the friction model parameters were updated by the local Lipschiz projection, and the chattering of control system was reduced by a hyperbolic function. Finally, a Lyapunov function was defined to verify the stability of the control method. Under the environment of Matlab/Simulink, simulation results show that the proposed control method can improve the speed response and the stability of the DFPM at a low speed by comparing with the traditional PID control method.

基金项目:
国家973 项目( 2011CB706802);中南大学创新驱动计划(2015CX002)
作者简介:
麻鹏达(1989-),男,硕士研究生 通讯作者:李毅波(1981-),男,博士,副教授
参考文献:


[1]王淑云,李惠曲,东赟鹏,等. 大型模锻件和模锻液压机与航空锻压技术[J]. 锻压装备与制造技术, 2009, 44(5):31-34. Wang S Y, Li H Q, Dong Y P, et al. Large forging and die-forging hydraulic press and forging technology[J]. China Metal Forming Equipment & Manufacturing Technology, 2009, 44(5):31-34.
[2]颜鸣皋,吴学仁,朱知寿. 航空材料技术的发展现状与展望[J]. 航空国际合作与交流,2004,(1):21-24. Yan M G, Wu X R, Zhu Z S. Recent progress and prospects for aeronautical material technologies[J]. Aeronautical International Cooperation and Exchange,2004,(1):21-24.
[3]庞克昌. 热模/等温精密锻造技术的发展[J]. 上海钢研, 2005,(1):3-6.Pang K C. The development of hot die/isothermal precision forging techniques[J]. Shanghai Steel & Iron Research, 2005,(1):3-6.
[4]Shen G, Furrer D. Manufacturing of aerospace forgings[J]. Journal of Materials Processing Technology, 2000, 98:189-195.
[5]Williams J C. Business directions and materials challenges for the aircraft engine industry[J]. Acta Metallurgica Sinica, 1996, 9(6):407-410.
[6]郭鸿镇,姚泽坤,虢迎光,等.等温精密锻造技术的研究进展[J].中国有色金属学报,2010,20(S1):570-576.Guo H Z, Yao Z K, Guo Y G, et al. Research progress of isothermal precision forging technology[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1):570-576.
[7]任卫红. 摩擦自激引起的液压爬行现象分析[J]. 煤矿机械,2003,(10):43-45.Ren W H. Analyze creeping phenomenon of hydraulic by frictional self-excited vibration[J]. Coal Mine Machinery, 2003, (10):43-45.
[8]于英华,徐平,刘大木. 机床低速爬行研究现状及分析[J]. 辽宁工程技术大学学报:自然科学版,2004,23(2):243-246. Yu Y H, Xu P, Liu D M. Present research situation and analysis on machine tool stick-slip motion[J]. Journal of Liaoning Technical University:Science Edition, 2004, 23(2): 243-246.
[9]程俊兰,陈春明. 液压伺服系统的摩擦力分析及补偿研究[J]. 机床与液压,2006,(10):177-179.Chen J L, Chen C M. Analysis and compensation for the friction in hydraulic servo systems[J]. Machine Tool & Hydraulics, 2006, (10):177-179.
[10]冯斌,梅雪松,杨军,等. 数控机床摩擦误差自适应补偿方法研究[J]. 西安交通大学学报,2013,47(11):65-69.Fen B, Mei X S, Yang J, et al. Adaptive compensation of friction error for numerical control machine tool[J]. Journal of Xi'an  Jiaotong University, 2013, 47(11):65-69.
[11]董志明,徐欣圻,周旺平. 大惯量超低速高精度伺服系统的H∞控制[J]. 微计算机信息,2008,24(19):19-21.Dong Z M, Xu X Q, Zhou W P. H-Infinity control for a super inertia, ultra-low speed and high precision servo system[J]. Microcomputer Information, 2008, 24(19):19-21.
[12]李文坚,李毅波,潘晴. 基于LuGre模型的大型模锻装备低速摩擦补偿分析[J]. 锻压技术,2015,40(1):71-75. Li W J, Li Y B, Pan Q. Analysis on low-velocity friction compensation of large forging equipment based on LuGre-model[J]. Forging & Stamping Technology, 2015, 40(1):71-75.
[13]Yao J, Jiao Z, Ma D,et al. High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties[J]. IEEE/ASME Transactions on Automatic Control, 2014, 19(2):633-641.
[14]Tsuruta K, Sato K, Ushimi N, et al. Nonlinear friction compensation for a high precision stage using synchronous piezoelectric device driver[A]. IEEE International Conference on Industrial Technology[C].Australia, 2009.
[15]Canudas-De-Wit C. Comments on “A new model for control of systems with friction”[J]. IEEE Transactions on Automatic Control, 1998, 43(8):1189-1190.
[16]Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems[J]. IEEE Transactions on Automatic Control, 1996, 41(3):447-451.
[17]Tang P, Lei Y, Song C. Research on pointing control systems with friction[J]. Procedia Engineering, 2011,(15):554-560.
[18]Pomet Jean-Baptiste, Praly Laurent. Adaptive nonlinear regulation: estimation from the Lyapunov equation[J]. IEEE Transactions on Automatic Control, 1992, 37(6):729-740.
[19]Tong H L, Tan K K, Huang S. Adaptive friction compensation with a dynamical friction model[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16:133-140.
[20]李毅波,张猛,黄明辉,等. 模锻压机低速运行摩擦力的参数辨识与补偿控制[J]. 华南理工大学学报:自然科学版,2013,41(7):38-44. Li Y B, Zhang M, Huang M H, et al. Parameter identification and compensation control of friction for die-forging press running at low speed[J]. Journal of South China University of Technology: Natural Science Edition, 2013, 41(7):38-44.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9