网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
板料成形中考虑油膜厚度和滑动速度的摩擦模型
英文标题:A friction model considering lubricant film thickness and sliding speed in sheets metal forming
作者:周国柱1 罗仁平2 董湘怀1 
单位:1.上海交通大学 2.上汽通用汽车有限公司 
关键词:油膜厚度  滑动速度  摩擦模型  润滑状态  镀锌板 
分类号:
出版年,卷(期):页码:2016,41(4):98-103
摘要:

板料成形过程中,摩擦特性直接影响成形件的质量。通过分析边界润滑状态和流体润滑状态的金属镀层板料受力情况,建立了一个混合润滑状态下关于润滑油膜厚度和滑动速度的摩擦模型。采用平板滑动摩擦实验研究了润滑油膜厚度和滑动速度对镀锌钢板摩擦系数的影响,确定了实验条件下CR4镀锌板的摩擦模型参数,并验证了其准确性。研究表明:摩擦系数随着油膜厚度增加而减小并最终趋于稳定;随着滑动速度增加,摩擦系数减小。油膜厚度和滑动速度的增加都使得模具和板料镀层直接接触的面积在实际接触面积中的百分比降低,从而摩擦力下降。

The friction characteristics directly affect the quality of stamping parts. By analyzing the forces acting on the coated metal sheet under the boundary lubrication and the fluid lubrication respectively, a friction model was proposed considering both lubricant film thickness and sliding speed under the mixed lubrication state. The influences of lubricant film thickness and sliding speed on the friction coefficient of galvanized steel sheets were studied by planar sliding test, and the friction model parameters of galvanized CR4 steel sheet were obtained under the experimental conditions and then were verified. It is concluded that the friction coefficient decreases with the increase of lubricant film thickness, and eventually tends to be stable; and it also decreases with the increase of sliding speed. With the increase of lubricant film thickness and sliding speed, the percentage of the contact area between the die and the sheet coating in the actual contact area decreases, and the friction force decreases theoretically.

基金项目:
国家自然科学基金资助项目(51275297)
作者简介:
周国柱(1991-),男,硕士研究生
参考文献:

[1]董湘怀. 金属塑性成形原理[M]. 北京:机械工业出版社,2011.

Dong X H. Principles of Metal Plastic Forming[M]. Beijing: China Machine Press, 2011.

[2]Keum Y T, Wagoner R H, Lee J K. Friction model for FEM simulation of sheet metal forming operations[A]. Proceedings of Numiform 2004-8th International Conference on Materials Processing and Design: Modeling, Simulation and Applications[C]. Ohio:AIP Publishing,2004.

[3]白振华,周庆田,窦爱民,等. 冷连轧高速轧制过程中摩擦因数机理模型的研究[J]. 钢铁,2007,42(5):47-50.

Bai Z H, Zhou Q T, Dou A M, et al. Study on mechanism model of friction coefficient in high-speed tandem cold rolling process [J]. Iron & Steel, 2007, 42(5): 47-50.

[4]Grueebler R, Hora P. Temperature dependent friction modeling for sheet metal forming[J]. International Journal of Material Forming, 2009, 2(1): 251-254.

[5]Filzek J, Ludwig M. Berücksichtigung der Reibung in der FEM-Simulation[A]. Tagungsband TB-036 des EFB-Kolloquiums Blechverarbeitung [C]. Fellbach, 2013.

[6]Kosanov J, Lenard J G, Uhrig J, et al. The effect of lubricant additives on the coefficient of friction in the flat-die test[J]. Materials Science and Engineering: A, 2006, 427(1): 274-281.

[7]Szakaly E D, Lenard J G. The effect of process and material parameters on the coefficient of friction in the flat-die test[J]. Journal of Materials Processing Technology, 2010, 210(6): 868-876.

[8]Dowson D, Higginson G R. A numerical solution to the elasto-hydrodynamic problem[J]. Journal of Mechanical Engineering Science, 1959, 1(1): 6-15.

[9]蒋浩民,陈新平,俞宁峰,等.正压力和滑动速度对镀锌钢板摩擦系数的影响[J].锻压技术,2005,30(Z1):129-132.

Jing H M, Chen X P, Yu N F, et al. Effects of contact pressure and sliding velocity on the frictional coefficient of zinc-coated sheets[J]. Forging & Stamping Technology, 2005,30 (Z1):129-132.

[10]李波,康永林,朱国明,等. 汽车用合金化热镀锌钢板摩擦特性研究[J]. 材料科学与工艺,2013,21(5): 88-94.

Li B, Kang Y L, Zhu G M, et al. Friction characteristics of automotive galvannealed steel sheets[J]. Materials Science & Technology, 2013, 21(5): 88-94.

[11]温诗铸,黄平. 摩擦学原理[M].北京:清华大学出版社,2002.

Wen S Z, Huang P. Tribology Principle[M]. Beijing: Tsinghua University Press, 2002.


[12]Bowden F P, Tabor D. The Friction and Lubrication of Solids
[M]. Oxford: Clarendon Press, 1964.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9