网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
薄壁钛管差温剪切弯曲热力耦合有限元模型
英文标题:Coupled thermal-mechanical finite element model in shear-bending process of Ti-alloy thin-walled tube under differential temperature fields constraints
作者:闫晶1 2 3 吴为1 2 3 
单位:1. 塑性成形技术航空科技重点实验室 2. 数字化塑性成形技术及装备北京市重点实验室 3. 北京航空制造工程研究所 
关键词:薄壁钛管 剪切弯曲 差温约束 热力耦合 有限元 
分类号:
出版年,卷(期):页码:2016,41(4):125-133
摘要:

基于ABAQUS软件环境下的动力显式热力耦合分析模块,建立了TA2薄壁钛管差温剪切弯曲过程模拟三维弹塑性热力耦合有限元模型,讨论了材料模型、热边界条件、单元类型和尺寸、质量放大等有限元建模关键问题,实验验证了有限元模型的可靠性。结果表明:(1)从有限元模型计算的精度和效率考虑,质量放大因子为10000是合理的;(2)单元尺寸越小,热力耦合实体单元模拟管材直线段传力区的温度越低,单元尺寸≤1.0 mm×1.0 mm的热力耦合壳单元模拟管材温度场的分布达到稳定;(3)与热力耦合实体单元相比,采用1.0 mm×1.0 mm热力耦合壳单元模拟的管材厚向应变分布更接近于实验结果。

Based on the dynamic explicit coupled thermal-mechanical (CT) module in software ABAQUS, a 3D CT FE model of TA2 thin-walled tubes was established to simulate shear-bending process under differential temperature fields constraints. The key problems including the material model, the boundary conditions, the element types and sizes, and quality amplification were discussed. The reliability of the FE model was verified by the experimental results. The results show that quality amplification factor of 10000 is the most appropriate when considering the simulation precision and efficiency of the FE model. The smaller the element size is, the lower is the temperature of force transmission area in the straight line of tube; the distribution of simulation temperature field in the tube becomes stable when element size is less than 1.0 mm×1.0 mm. Compared with the CT continuum elements,the thickness strains distributions simulated by CT shell elements with the element size 1.0 mm×1.0 mm are closer to the experimental results.

基金项目:
国家自然科学基金资助项目(51305415)
作者简介:
闫晶(1981-),男,博士,高级工程师
参考文献:

[1]Goodarzi M, Kuboki T, Murata M. Deformation analysis for the shear bending process of circular tubes[J]. Journal of Materials Processing Technology, 2005, 162: 492-497.

[2]Yuan S J, Han C, Wang Y, et al. Shear hydro-bending of light alloy tubes[A]. 10th International Conference on Technology of Plasticity[C].German: Aachen, 2011.

[3]Palumbo G, Tricarico L. Numerical and experimental investigations on the warm deep drawing process of circular aluminum alloy specimens[J]. Journal of Materials Processing Technology, 2007, 184: 115-123.

[4]Boogaard A H, Hue′tink J. Simulation of aluminium sheet forming at elevated temperatures[J]. Computer Methods in Applied Mechanics and Engieering, 2006, 195: 6691-6709.

[5]Kim H S, Koc M. Numerical investigations on springback characteristics of aluminum sheet metal alloys in warm forming conditions[J]. Journal of Materials Processing Technology, 2008, 204: 370-383.

[6]Zhang Z Y, Yang H, Li H, et al. Thermo-mechanical coupled 3D-FEmodeling of heat rotary draw bending for large-diameter thin-walled CP-Ti tube[J]. International Journal of Advanced Manufacturing Technology, 2014, 72:1187-1203.

[7]李虎, 詹梅, 杨合,等. 钛合金薄壁壳体强旋热力耦合有限元分析[J]. 机械工程学报, 2008, 44(6): 187-192.

Li H, Zhan M, Yang H, et al. Coupled thermal-mechanical FEM analysis of power spinning of titanium alloy thin-walled shell[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6): 187-192.

[8]Zhou G, Hua L, Qian D S, et al Effects of axial rolls motions on radial-axial rolling process for large-scale alloy steel ring with 3D coupled thermo-mechanical FEA[J]. International Journal of Mechanical Sciences, 2012, 59: 1-7.

[9]陈宇, 康达昌, 金晓鸥. 钛合金锥形件温热剪旋热力耦合有限元模拟[J]. 材料科学与工艺, 2006,14(1):18-21.

Chen Y, Kang D C, Jin X O. FEM coupled thermal simulation of warm shear spinning of cone workpiece of titanium alloy[J]. Materials Science & Technology, 2006,14(1): 18-21.

[10]刘红生, 包军, 邢忠文, 等. 高强钢板热冲压成形热力耦合数值模拟[J]. 材料科学与工艺, 2010, 18(4): 460-463.

Liu H S, Bao J, Xing Z W, et al. Numerical simulation on channel shape hot stamping of 22MnB5 high-strength sheet metal based on thermal-mechanical coupled method[J]. Materials Science & Technology, 2010,18(4): 460-463.

[11]Tao Z J, Yang H, Li H, et al. Coupled thermo-mechanical FE simulation of unloading cooling springback in NC heating bending of large diameter thin-walled commercial pure titanium tube[J]. Procedia Engineering, 2014, 81: 2273-2279.

[12]《中国航空材料手册》编辑委员会. 中国航空材料手册[M]. 北京:中国标准出版社, 2001.

Editor Commitee of “China Aeronautical Materials Handbook”. China Aeronautical Materials Handbook[M]. Beijing: China Standard Press, 2001.

[13]赵镇南. 传热学[M]. 北京:高等教育出版社, 2002.

Zhao Z N. Heat Transfer[M]. Beijing: Higher Education Press, 2002.

[14]理有亲, 林兆荣,陈春奎,等. 钛板冲压成形技术[M]. 北京:国防工业出版社, 1986.

Li Y Q, Lin Z R,Chen C K,et al. Ti-alloy Sheet Metal Forming Technology[M]. Beijing: National Defence Industry Press, 1986.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9