网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于迭代学习控制模型的覆盖件模具拉深筋优化算法
英文标题:A new optimization algorithm for drawbead on panel die based on iterative learning control model
作者:张秋翀 柳玉起 章志兵 
单位:华中科技大学 
关键词:拉深筋阻力值 优化效率 覆盖件成形 迭代学习控制 
分类号:TG386.41; TP391.9
出版年,卷(期):页码:2016,41(6):16-20
摘要:

提出了基于迭代学习控制模型的覆盖件模具拉深筋优化算法,极大地提高了优化效率。利用成形状态函数,成形质量函数和学习律函数构建工艺参数优化的迭代控制模型。将该模型应用到拉深筋阻力值优化中,利用有限元模拟代替很难显示表达的状态函数,预测给定工艺参数方案下板料成形后的应力应变状态。根据单元的应变状态,定义拉深筋线段的局部缺陷程度为成形质量函数,评价拉深筋周围的成形质量好坏。学习律函数不仅参考拉深筋段周围的成形质量偏差确定拉深筋阻力值的改变量,同时还能智能更新学习增益修正拉深筋阻力值的改变幅度,加快了优化收敛速度。通过门内板的算例,证明了该拉深筋优化算法的快速性和实用性。

 
A new optimization algorithm of drawbead on panel die was proposed based on an iterative learning control model, which greatly improved the optimization efficiency. The iterative learning control model was constructed by the forming state function, the forming quality function and the learning updating law function. It was applied to the optimization of drawbead restraining force, and the state function, which was hardly calculated explicitly, was replaced by the numerical simulation to predict the stress-strain state under the given technological parameters. Furthermore, the defect degree of drawbead was defined as the forming quality function to evaluate the forming quality around drawbead. The learning updating law function not only could show the change value of drawbead restraining force based on the forming quality around drawbead, but also could update the learning gain automatically to modify the change extent of drawbead restraining force, which accelerated the convergence speed of the optimization. At last, the rapidity and practicality of the algorithm were verified by the numerical experiment of the inner door panel.
基金项目:
国家自然科学基金资助项目 ( 51275184)
作者简介:
作者简介:张秋翀(1989-),男,博士研究生 E-mail:zhangqiuchong@sina.com 通讯作者:章志兵(1978-),男,博士,副教授 E-mail:zhangzb@mail.hust.edu.cn
参考文献:

[1]胡江波,柳玉起,章志兵.车身覆盖件模具的拉深筋工艺设计和优化[J]. 锻压技术,2008,33(1):69-73.Hu J B, Liu Y Q, Zhang Z B. Process design and optimization of drawbead on autobody panel die[J]. Forging & Stamping Technology, 2008, 33(1): 69-73. 


[2]文艺,钟文,柳玉起.冲压成形过程中拉延工艺参数的优化设计[J]. 塑性工程学报,2013,20(3):31-36.Wen Y, Zhong W, Liu Y Q. Optimization design of process parameters in sheet metal drawing[J]. Jounal of Plasticity Engineering, 2013, 20(3): 31-36.


[3]冯小龙. 基于支持向量机回归算法的薄板冲压成形工艺参数优化[D].长沙:湖南大学,2013.Feng X L. Optimization of Sheet Metal Forming Process Parameter Based on Support Vector Machine Regression Algorithm[D]. Changsha: Hunan University, 2013.


[4]卿启湘,陈哲吾,刘杰,等. 基于Kriging插值和回归响应面法的冲压成形参数的优化及对比分析[J]. 中国机械工程,2013,24(11):1447-1452,1458.Qing Q X, Chen Z W, Liu J, et al. Study on comparison and optimization of sheet forming parameters using kriging interpolation and regression response surface metamodeling techniques[J]. China Mechanical Engineering, 2013, 24(11): 1447-1452, 1458. 


[5]田银,谢延敏,孙新强,等. 基于鱼群RBF神经网络和改进蚁群算法的拉深成形工艺参数优化[J]. 锻压技术,2014, 39(12):129-136.Tian Y, Xie Y M, Sun X Q, et al. Process parameters optimization of deep drawing based on fish RBF neural network and improved ant colony algorithm[J]. Forging & Stamping Technology, 2014, 39(12): 129-136.


[6]田野,吕明达,黄余平. 汽车前门加强板冲压工艺参数优化[J]. 锻压技术,2014, 39(12):35-38.Tian Y, Lv M D, Huang Y P. Parameter optimization of stamping process on auto front door reinforcing plate[J]. Forging & Stamping Technology, 2014, 39(12): 35-38.


[7]Jae J L, Gyung J P. Optimization of the structural and process parameters in the sheet metal forming process[J]. Journal of Mechanical Science and Technology, 2014, 28(2): 605-619.


[8]Tang L, Wang H, Li G Y. Advanced high strength steel springback optimization by projection-based heuristic global search algorithm[J]. Materials and Design, 2013, 43: 426-437.


[9]Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning[J]. Journal of Robotic System, 1984, 1(2): 123-140.


[10]Uchiyama M. Formation of high speed motion pattern of mechanical arm by trial[J]. Transactions of the Society of Instrument and Control Engineers, 1978,(14): 706-712.


[11]王东. 迭代学习控制的收敛速度分析[D]. 沈阳:沈阳工艺大学,2006.Wang D. Analysis of Convergence Rate of Iterative Learning Control Algorithm[D]. Shenyang: Shenyang University of Technology, 2006.


[12]Du T, Liu Y Q, Zhang Z B, et al. Fast FE analysis system for sheet metal stamping—FASTAMP[J]. Journal of Materials Processing Technology, 2007, 187-188: 402-406.


[13]Stoughton T B. Model of drawbead forces in sheet metal forming[A]. Proceedings of IDDRG 15th Biennial Congress[C]. Dearborn, USA,1988.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9