[1]原霞,王铁,樊文欣,等.基于simufact 的连杆衬套旋压工艺参数的模拟研究[J]. 热加工工艺,2013,42(1):63-66. Yuan X, Wan T, Fan W X, et al. Simulation research on spinning technological parameters of connecting rod bushing based on simufact[J]. Hot Working Technology, 2013, 42(1): 63-66.
[2]张利鹏,刘智冲,周宏宇. 筒形件强力旋压发展过程及其现状分析[J].塑性工程学报,2006,13(1):43-46,57.Zhang L P, Liu Z C, Zhou H Y. Development process and current situation analysis of power spinning for cylindrical parts[J]. Journal of Plasticity Engineering, 2006, 13(1): 43-46,57.
[3]樊文欣,张涛,宋河金,等. 强力旋压加工的高速柴油机连杆衬套[J].车用发动机,1997,(2):32-35.Fan W X, Zhang T, Song H J, et al. A connecting rod bushing of high speed diesel engines by the powerful swivel press technique[J]. Vehicle Engine, 1997,(2): 32-35.
[4]雷萍. 小波神经网络技术在齿轮箱轴承故障诊断中的应用[D].兰州:兰州理工大学,2009.Lei P. Application of Wavelet Neural Network to Gearbox Bearings Fault Diagnosis[D]. Lanzhou: Lanzhou University of Technology, 2009.
[5]冯志刚,樊文欣,赵俊生,等. 基于BP神经网络的强力旋压成形连杆衬套壁厚预测[J].热加工工艺,2014,43(3):129-130,134.Feng Z G, Fan W X, Zhao J S, et al. Wall thickness prediction of connecting rod bushing of power spinning forming based on BP neural network[J]. Hot Working Technology, 2014, 43(3): 129-130, 134.
[6]李涛,樊文欣,赵俊生,等. 基于BP神经网络的强力旋压成形本构关系模型[J]. 锻压技术,2014,39(2):150-153.Li T, Fan W X, Zhao J S, et al. Research on constitutive relation of tube power spinning forming based on BP neural network[J]. Forging & Stamping Technology, 2014, 39(2): 150-153.
[7]盛仲飙. BP神经网络原理及MATLAB仿真[J].渭南师范学院学报,2008,23(5):65-67.Sheng Z B. Principle of BP neural network and MATLAB simulation[J]. Journal of Weinan Teachers University, 2008, 23(5): 65-67.
[8]宋献锋,张克辉. 基于模糊RBF神经网络的板带横向厚度和纵向厚度综合控制[J].热加工工艺,2012,41(13):132-137.Song X F, Zhang K H. Strip horizontal thickness and vertical thickness complex cxontrol based on fuzzy RBF neural-network[J]. Hot Working Technology, 2012, 41(13): 132-137.
[9]田银,谢延敏,孙新强,等. 基于鱼群RBF神经网络和改进蚁群算法的拉深成形工艺参数优化[J]. 锻压技术,2014,39(12):129-136.Tian Y, Xie Y M, Sun X Q, et al. Process parameters optimization of deep drawing based on fish RBF neural network and improved ant colony algorithm[J]. Forging & Stamping Technology, 2014,39(12): 129-136.
[10]刘维群,李为华. 基于自组织选取中心的广义RBF神经网络学习算法[J]. 信阳师范学院学报:自然科学版,2007,20(4): 515-517. Liu W Q, Li W H. An algorithm for generalized RBF network based on self-organizing selection center[J]. Journal of Xinyang Normal University:Natural Science Edition, 2007, 20(4): 515-517.
[11]尤文坚,叶雪英,唐仕云. 基于径向基神经网络农机数量预测的研究[J].中国农机化学报,2013,34(2):38-41.You W J, Ye X Y, Tang S Y. Research on forecast of the number of agricultural machinery based on RBF neural network[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(2): 38-41.
|