网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于模拟退火算法的高强钢Yoshida-Uemori材料模型参数反演分析
英文标题:Parameter inversion on Yoshida-Uemori material model of high strength steel based on simulated annealing algorithm
作者:徐杰 王田 张荣 
单位:重庆工商职业学院  重庆大学 
关键词:高强钢 Yoshida-Uemori模型 参数反演 模拟退火算法 
分类号:TG386
出版年,卷(期):页码:2016,41(6):133-137
摘要:

 针对Yoshida-Uemori模型参数难于确定的问题,以DP600双相高强钢为例,提出将图解法与有限元模拟反演技术相结合,应用工程优化数学思想,借助于模拟退火算法最小化有限元计算值与物理试验真实值之差,兼顾结果精度与求解效率。通过使用不同初始值反演分析可以发现,此求解方法对于初始值具有良好的适应性,可极大提升反演结果的容错率,更适于实际应用。并通过V型弯曲试验验证了经由该方法测定的Y-U模型参数可直接用于有限元回弹仿真模拟中。

 For the difficulty of obtaining Yoshida-Uemori material model parameters, an approach combining graphic method with finite element simulation inversion was proposed for high strength steel DP600. The difference of the finite element calculation values with physical test values was obtained by simulated annealing algorithm and engineering optimization mathematical method considering the result precision and solving efficiency. Through the inversion analysis on different initial values, it is found that this solving method is of good adaptability, and error-tolerance of the inversion result can be improved greatly. Therefore, it is fit for further actual application. The Yoshida-Uemori material model parameters measured by the inversion method and verified by V-shaped bending test can be directly used in finite element to predict springback. 

基金项目:
基金项目:重庆市前沿与应用基础研究项目(cstc2015jcyjA1034)
作者简介:
作者简介:徐杰(1981-),男,硕士,讲师 E-mail:85709201@qq.com
参考文献:

 
[1]Ji Hoon Kim, Daeyong Kim, Frédéric Barlat, et al. Crystal plasticity approach for predicting the Bauschinger effect in dual-phase steels[J], Materials Science and Engineering: A, 2012,539(30): 259-270.



[2]Prager W. A new method of analyzing stresses and strains in workhardening plastic solids[J]. Journal of Applied Mechanics,1956,23:493-496.


[3]Skelton R P, Chaboche J L. A mathematical representation of the multiaxial Bauschinger effect[J]. Materials at High Temperatures, 2007, 24(1):11-26.


[4]Chaboche J L. Time-independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986,2(2): 149-188.


[5]肖煜中,陈军. 金属板料冲压数值模拟中的宏观硬化模型研究现状[J]. 塑性工程学报,2009,16(4):51-58. Xiao Y Z, Chen J. Research on hardening model of numerical simulation in sheet metal stamping[J]. Journal of Plasticity Engineering,2009,16(4):51-58.


[6]Ohno N, Kachi Y A. constitutive model of cyclic plasticity for nonlinear hardening materials[J]. Journal of Applied Mechanics,1986,53(2):395-403.


[7]Yoshida F, Uemori T. A model of large-strain cyclic plasticity and its application to springback simulation[J]. International Journal of Mechanical Sciences,2003, 45:1687-1702.


[8]刘迪辉,钟志华. Barlat 1991模型的材料参数反演[J]. 机械工程学报,2006, 42(4):47-51.Liu D H, Zhong Z H. Material parameters inversion of Barlat 1991 model[J]. Journal of Mechanical Engineering,2006, 42(4):47-51.


[9]Martin Bker. A new method to determine material parameters from machining simulations using inverse identification[J]. Procedia CIRP,2015,31: 399-404.


[10]Tomonari Furukawa, Tomohiro Sugata, Shinobu Yoshimura, et al. An automated system for simulation and parameter identification of inelastic constitutive models[J]. Computer Methods in Applied Mechanics and Engineering, 2002,191(21-22):2235-2260.


[11]Shi M F, Zhu X, Xia C, et al. Determination of nonlinear isotropic/kinematic hardening constitutive parameters for AHSS using tension and compression tests[A]. Proceedings of NUMISHEET Conference[C]. Switzerland,2008.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9