[1]吴超, 严勇, 胡志力. 基于BP神经网络的管材数控弯曲多参数优化方法研究[J]. 锻压技术, 2015, 40(6): 131-137.Wu C, Yan Y, Hu Z L. Research on optimization method of multi-parameter in NC tube bending based on BP neural network[J]. Forging & Stamping Technology, 2015, 40(6): 131-137.
[2]扶名福, 范洪春, 张庭芳. BP神经网络在镁合金流变应力预测中的应用[J]. 锻压技术, 2014, 39(7): 10-13.Fu M F, Fan H C, Zhang T F. Flow stress prediction in magnesium alloy based on BP neural networks[J]. Forging & Stamping Technology, 2014,39(7):10-13.
[3]刘奎武, 边巍. 基于Dynaform的波形片成形回弹研究[J]. 锻压技术, 2015, 40(3): 127-130.Liu K W, Bian W. Study on springback in cushion segment forming based on Dynaform[J]. Forging & Stamping Technology, 2015, 40(3): 127-130.
[4]解加庆, 赵捍东, 李飞, 等. 基于正交试验的筒形件旋压工艺优化设计[J]. 锻压技术, 2013, 38(4): 182-185.Xie J Q, Zhao H D, Li F,et al. Optimization design of cylinder spinning technology based on orthogonal experiment[J]. Forging & Stamping Technology, 2013, 38(4): 182-185
[5]李英, 焦洪宇, 牛曙光. 基于Autoform-Sigma的汽车顶盖后横梁冲压工艺参数优化[J]. 锻压技术, 2015, 40(9): 16-20.Li Y, Jiao H Y, Niu S G. Process parameters optimization on rear cross beam of car roof panel based on Autoform-Sigma[J]. Forging & Stamping Technology, 2015, 40(9): 16-20.
[6]占亮, 李霞, 孙礼宾, 等. 基于正交试验的曲轴热锻工艺参数优化[J]. 锻压技术, 2014, 39(7): 10-13.Zhan L, Li X, Sun L B, et al. Design optimization of process parameters of crankshaft die forging based on orthogonal experiment[J]. Forging & Stamping Technology, 2014, 39(7): 10-13.
[7]李毅, 张火土, 李延平, 等. 基于正交试验法的车用侧墙板冲压成形工艺参数分析[J]. 锻压技术, 2012, 37(2): 21-24.Li Y, Zhang H T, Li Y P, et al. Analysis of stamping process parameters on formability of automotive sidewall plate based on orthogonal experiment[J]. Forging & Stamping Technology, 2012, 37(2): 21-24.
[8]姜志宏, 黄信建, 熊洋, 等. 基于正交试验和BP神经网络的板材多点渐进成形工艺优化[J]. 锻压技术, 2015, 40(5): 33-37.Jiang Z H, Huang X J, Xiong Y, et al. Optimization of process parameters for multi-point incremental forming of sheet metal based on orthogonal examination and BP neural network[J]. Forging & Stamping Technology, 2015, 40(5): 33-37.
[9]李涛, 樊文欣, 赵俊生, 等. 基于BP神经网络的强力旋压成形本构关系模型[J]. 锻压技术, 2014, 39(2): 150-153.Li T, Fan W X, Zhao J S, et al. Research on constitutive relation of tube power spinning forming based on BP neural network[J]. Forging & Stamping Technology, 2014, 39(2): 150-153.
[10]张利红, 梁英波, 李晋. 基于BP神经网络的轧机油膜厚度补偿的测试与建模[J]. 锻压技术, 2012, 37(4): 116-119.Zhang L H, Liang Y B, Li J. Measurement and modeling of rolling mill oil film thickness compensation based on BP neural network[J]. Forging & Stamping Technology, 2012, 37(4): 116-119.
|