[1]Kim K, Kim B I, Cho H. Multiple-choice knapsack-based heuristic algorithm for the two-stage two-dimensional cutting stock problem in the paper industry[J]. International Journal of Production Research, 2014, 52(19): 5675-5689.
[2]Furini F, Malaguti E. Models for the two-dimensional two-stage cutting stock problem with multiple stock size[J]. Computers & Operations Research, 2013, 40(8): 1953-1962.
[3]陈仕军, 曹炬. 一种 “一刀切” 式矩形件优化排样混合算法[J].锻压技术, 2009, 34(4): 143-147.Chen S J, Cao J . Hybird algorithm of guillotine rectangular cutting problem[J]. Forging & Stamping Technology, 2009, 34(4): 143-147.
[4]Cui Y, Zhao Z. Heuristic for the rectangular two-dimensional single stock size cutting stock problem with two-staged patterns[J]. European Journal of Operational Research, 2013, 231(2): 288-298.
[5]潘卫平, 陈秋莲, 崔耀东, 等. 多板材单一矩形件下料问题的一种求解算法[J]. 锻压技术, 2014, 39(11): 6-10.Pan W P, Chen Q L, Cui Y D, et al. An algorithm for solving problem of multiple plate single rectangle cutting stock[J]. Forging & Stamping Technology, 2014, 39(11): 6-10.
[6]何琨, 黄文奇, 金燕. 基于动作空间求解二维矩形 Packing 问题的高效算法[J]. 软件学报, 2012, 23(5):1037-1044.He K, Huang W Q, Jin Y. Efficient algorithm based on action space for solving the 2D rectangular packing problem[J]. Journal of Software, 2012, 23(5):1037-1044.
[7]Kallrath J, Rebennack S, Kallrath J, et al. Solving real-world cutting stock-problems in the paper industry: Mathematical approaches, experience and challenges[J]. European Journal of Operational Research, 2014, 238(1): 374-389.
[8]潘卫平, 陈秋莲, 崔耀东. 考虑切割刀数的最优两段排样算法研究[J]. 广西大学学报:自然科学版, 2014,39(3):687-692.Pan W P, Chen Q L, Cui Y D. Research on the algorithm for generating optimal two segment cutting patterns with cuts number consideration[J]. Journal of Guangxi University:Natural Science Edition, 2014,39(3):687-692.
[9]Agrawal P K. Minimising trim loss in cutting rectangular blanks of a single size from a rectangular sheet using orthogonal guillotine cuts[J]. European Journal of Operational Research, 1993, 64(3): 410-422.
[10]Arslanov M Z. Continued fractions in optimal cutting of a rectangular sheet into equal small rectangles[J]. European Journal of Operational Research, 2000, 125(2): 239-248.
[11]崔耀东, 张春玲, 赵谊. 同尺寸矩形毛坯排样的连分数分支定界算法[J]. 计算机辅助设计与图形学学报, 2004, 16(2): 252-256. Cui Y D, Zhang C L, Zhao Y. A continued fractions and branch and bound algorithm for generating cutting patterns with equal rectangles[J].Journal of Computer-Aided Design & Computer Graphics, 2004, 16(2): 252-256.
[12]Cui Y, Gu T, Hu W. Recursive algorithms for the optimum cutting of equal rectangles[J]. International Journal of Computers and Applications,2011, 33(2): 103-107
[13]郭俐, 崔耀东. 有约束单一尺寸矩形毛坯最优排样的拼合算法[J]. 农业机械学报, 2007, 38(10): 140-144.Guo L, Cui Y D. Joining method for generating constrained cutting patterns for rectangles of a single size[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(10): 140-144.
|