[1]Cetlin P, Corrêa E, Aguilar M. The effect of the strain path on the work hardening of austenitic and ferritic stainless steels in axisymmetric drawing[J]. Metallurgical and Materials Transactions A, 2003, 34(3): 589-601. [2]Skolyszewski A, Luksza J, Packo M. Some problems of multi-stage fine wire drawing of high-alloy steels and special alloys[J]. Journal of Materials Processing Technology, 1996, 60(1): 155-160. [3]Schmitt J H, Shen E L, Raphanel J L. A parameter for measuring the magnitude of a change of strain path: Validation and comparison with experiments on low carbon steel[J]. International Journal of Plasticity, 1994, 10(5): 535-551. [4]Rauch E F, Gracio J J, Barlat F, et al. Modelling the plastic behaviour of metals under complex loading conditions[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19(3): 100-106. [5]Van Riel M, Van Den Boogaard A H. Stress-strain responses for continuous orthogonal strain path changes with increasing sharpness[J]. Scripta Materialia, 2007, 57(5): 381-384. [6]Van Den Boogaard A H, Van Riel M. Non-proportional deformation paths for sheet metal: experiments and models[A]. Hora P. 3rd Forming Technology Forum Zurich 2009 - Constitutive Modeling of Kinematic and Anisotropic Hardening Effects for Ductile Materials, Institute of Virtual Manufacturing, ETH Zurich[C]. Zurich, Switzerland, 2009. [7]Van Riel M. Strain Path Dependency in Sheet Metal[D]. Enschede: Universiteit Twente, 2009. [8]尹建成. 应变路径对907A钢力学行为的影响[D] . 哈尔滨:哈尔滨工程大学, 2002.Yin J C. The Influece of Strain Path on Mechanical Behaviors of Steel 907A[D]. Harbin: Harbin Engineering University, 2002. [9]Barlat F, Gracio J J, Lee M G, et al. An alternative to kinematic hardening in classical plasticity[J]. International Journal of Plasticity, 2011, 27(9): 1309-1327. [10]Hasegawa T, Yakou T. “Region of constant flow stress” during compression of aluminium polycrystals prestrained by tension[J]. Scripta Metallurgica, 1974, 8(8): 951-954. [11]Hasegawa T, Yakou T, Karashima S. Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium[J]. Materials Science and Engineering, 1975, 20: 267-276. [12]Hasegawa T, Yakou T. Effects of stress reversal and thermal recovery on stress vs strain behavior in aluminum[J]. Scripta Metallurgica, 1980, 14(10): 1083-1087. [13]Hasegawa T, Yakou T, Kocks U F. Forward and reverse rearrangements of dislocations in tangled walls[J]. Materials Science and Engineering, 1986, 81: 189-199. [14]Li F, Bate P S. Strain path change effects in cube textured aluminium sheet[J]. Acta Metallurgica et Materialia, 1991, 39(11): 2639-2650. [15]Wagoner R H, Laukonis J V. Plastic behavior of aluminum-killed steel following plane-strain deformation[J]. Metallurgical Transactions A, 1983, 14(7): 1487-1495. [16]Yakou T, Hasegawa T, Karashima S. Stagnation of strain hardening during reversed straining of prestrained aluminium, copper and iron[J]. Transactions of the Japan Institute of Metals, 1985, 26(2): 88-93. [17]Barlat F, Ferreira Duarte J M, Gracio J J, et al. Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample[J]. International Journal of Plasticity, 2003, 19(8):1215-1244. [18]Rousselier G, Barlat F, Yoon J W. A novel approach for anisotropic hardening modeling-Part I: Theory and its application to finite element analysis of deep drawing[J]. International Journal of Plasticity, 2009, 25(12): 2383-2409. [19]Rousselier G, Barlat F, Yoon J W. A novel approach for anisotropic hardening modeling-Part II: Anisotropic hardening in proportional and non-proportional loadings, application to initially isotropic material[J]. International Journal of Plasticity, 2010, 26(7): 1029-1049. [20]Hu Z, Rauch E F, Teodosiu C. Work-hardening behavior of mild steel under stress reversal at large strains[J]. International Journal of Plasticity, 1992, 8(7): 839-856. [21]Hu Z. Work-hardening behavior of mild steel under cyclic deformation at finite strains[J]. Acta Metallurgica et Materialia, 1994, 42(10): 3481-3491. [22]Thuillier S, Rauch E F. Development of microbands in mild steel during cross loading[J]. Acta Metallurgica et Materialia, 1994, 42(6): 1973-1983. [23]Corrêa E C S, Melo Filho L D R, Aguilar M T P, et al. The effect of cyclic straining on the drawing stress of low carbon steel bars[J]. Materials Chemistry and Physics, 2005, 94(2-3): 376-381. [24]Wilson D V. Reversible work hardening in alloys of cubic metals[J]. Acta Metallurgica, 1965, 13(7): 807-814. [25]Wilson D V, Zandrahimi M, Roberts W T. Effects of changes in strain path on work-hardening in CP aluminium and an Al/Cu/Mg alloy[J]. Acta Metallurgica et Materialia, 1990, 38(2): 215-226. [26]Wilson D V, Bate P S. Influences of cell walls and grain boundaries on transient responses of an if steel to changes in strain path[J]. Acta Metallurgica et Materialia, 1994, 42(4): 1099-1111. [27]Nesterova E V, Bacroix B, Teodosiu C. Microstructure and texture evolution under strain-path changes in low-carbon interstitial-free steel[J]. Metallurgical and Materials Transactions A, 2001, 32(10): 2527-2538. [28]Kuwabara T, Ikeda S, Kuroda K. Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension[J]. Journal of Materials Processing Technology, 1998, 80–81: 517-523. [29]Meng B, Wan M, Wu X, et al. Constitutive modeling for high-temperature tensile deformation behavior of pure molybdenum considering strain effects[J]. International Journal of Refractory Metals and Hard Materials, 2014, 45: 41-47. [30]韩非, 万敏, 吴向东. 板料成形极限理论与实验研究进展[J]. 塑性工程学报, 2006, 13(5): 80-86.Han F, Wan M, Wu X D. Theoretical and experimental investigation progress on the forming limit of sheet metal forming[J]. Journal of Plasticity Engineering, 2006, 13(5): 80-86. [31]万敏,周贤宾. 复杂加载路径下板料屈服强化与成形极限的研究进展[J]. 塑性工程学报, 2000, 7(2): 36-39.Wan M, Zhou X B. Research progress on the yielding, hardening and forming limit of sheet metals under complex loading paths[J]. Journal of Plasticity Engineering, 2000, 7(2): 36-39. [32]王海波, 万敏, 阎昱, 等. 参数求解方法对屈服准则的各向异性行为描述能力的影响[J]. 机械工程学报, 2013, 49(24): 45-52.Wang H B, Wan M, Yan Y, et al. Effect of the solving method of parameters on the description ability of the yield criterion about the anisotropic behavior[J]. Journal of Mechanical Engineering, 2013, 49(24): 45-52. [33]王文平, 刁可山, 吴向东, 等. 板料屈服行为及强化规律的研究进展[J]. 机械工程学报, 2013, 49(24): 7-14.Wang W P, Diao K S, Wu X D, et al. Review on yielding and hardening behavior of sheet metal[J]. Journal of Mechanical Engineering, 2013, 49(24): 7-14. [34]Raphanel J L, Schmitt J H, Baudelet B. Effect of a prestrain on the subsequent yielding of low carbon steel sheets: Experiments and simulations[J]. International Journal of Plasticity, 1986, 2(4): 371-378. [35]Juul Jensen D, Hansen N. Flow stress anisotropy in aluminium[J]. Acta Metallurgica et Materialia, 1990, 38(8): 1369-1380. [36]Liu Q, Juul Jensen D, Hansen N. Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium[J]. Acta Materialia, 1998, 46(16): 5819-5838. [37]Hansen N, Huang X. Microstructure and flow stress of polycrystals and single crystals[J]. Acta Materialia, 1998, 46(5): 1827-1836. [38]Hansen N, Huang X, Pantleon W, et al. Grain orientation and dislocation patterns[J]. Philosophical Magazine, 2006, 86(25-26): 3981-3994. [39]Hansen N, Jensen D J. Development of microstructure in FCC metals during cold work[J]. Philosophical Transactions of the Royal Society of London-Series A: Mathematical, Physical and Engineering Sciences, 1999, 357(1756): 1447-1469. [40]Rauch E F, Gracio J J, Barlat F. Work-hardening model for polycrystalline metals under strain reversal at large strains[J]. Acta Materialia, 2007, 55(9): 2939-2948. [41]Rauch E F, G'Sell C. Flow localization induced by a change in strain path in mild steel[J]. Materials Science and Engineering: A, 1989, 111: 71-80. [42]Rauch E F, Schmitt J H. Dislocation substructures in mild steel deformed in simple shear[J]. Materials Science and Engineering: A, 1989, 113: 441-448. [43]Rauch E F, Thuillier S. Rheological behaviour of mild steel under monotonic loading conditions and cross-loading[J]. Materials Science and Engineering: A, 1993, 164(1-2): 255-259. [44]Feltner C E, Laird C. Cyclic stress-strain response of F.C.C. metals and alloys-II:Dislocation structures and mechanisms[J]. Acta Metallurgica, 1967, 15(10): 1633-1653. [45]Christodoulou N, Woo O T, MacEwen S R. Effect of stress reversals on the work hardening behaviour of polycrystalline copper[J]. Acta Metallurgica, 1986, 34(8): 1553-1562. [46]Vincze G, Rauch E F, Gracio J J, et al. A comparison of the mechanical behaviour of an AA1050 and a low carbon steel deformed upon strain reversal[J]. Acta Materialia, 2005, 53(4): 1005-1013. [47]Peeters B, Seefeldt M, Teodosiu C, et al. Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain paths. I: An integrated model based on substructure and texture evolution, and its prediction of the stress-strain behaviour of an IF steel during two-stage strain paths[J]. Acta Materialia, 2001, 49(9): 1607-1619. [48]Zhao T Z, Zhang G L, Song H W, et al. Influences of simple strain path changes on mechanical behaviours of pearlitic steel wire[J]. Materials Science and Technology, 2015, 31(3): 310-316. [49]Teodosiu C, Hu Z. Evolution of the intragranular microstructure at moderate and large strains: modelling and computational significance[A]. Shen S F, Dawson P R. Numiform 1995[C]. Rotterdam,Netherlands, 1995. [50]Li S, Hoferlin E, Bael A V, et al. Finite element modeling of plastic anisotropy induced by texture and strain-path change[J]. International Journal of Plasticity, 2003, 19(5): 647-674. [51]Haddadi H, Bouvier S, Banu M, et al. Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: Modelling, numerical analysis and identification[J]. International Journal of Plasticity, 2006, 22(12): 2226-2271. [52]Haddag B, Balan T, Abed Meraim F. Investigation of advanced strain-path dependent material models for sheet metal forming simulations[J]. International Journal of Plasticity, 2007, 23(6): 951-979. [53]Wang J, Levkovitch V, Reusch F, et al. On the modeling of hardening in metals during non-proportional loading[J]. International Journal of Plasticity, 2008, 24(6): 1039-1070. [54]Kocks U F. Laws for work-hardening and low-temperature creep[J]. Journal of Engineering Materials and Technology, 1976, 98(1): 76-85. [55]Mecking H, Kocks U F. Kinetics of flow and strain-hardening[J]. Acta Metallurgica, 1981, 29(11): 1865-1875. [56]Kocks U F, Mecking H. Physics and phenomenology of strain hardening: the FCC case[J]. Progress in Materials Science, 2003, 48(3): 171-273. [57]Lee J W, Lee M G, Barlat F. Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction[J]. International Journal of Plasticity, 2012, 29: 13-41. [58]Lee J Y, Lee J W, Lee M G, et al. An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw/bending[J]. International Journal of Solids and Structures, 2012, 49(25): 3562-3572. [59]He W J, Zhang S H, Song H W. An extended homogenous yield function based anisotropic hardening model for description of anisotropic hardening behavior of materials[J]. International Journal of Mechanical Sciences, 2013, 77: 343-355. [60]Barlat F, Vincze G, Grácio J J, et al. Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels[J]. International Journal of Plasticity, 2014, 58: 201-218. [61]Peeters B, Kalidindi S R, Van Houtte P, et al. A crystal plasticity based work-hardening/softening model for b.c.c. metals under changing strain paths[J]. Acta Materialia, 2000, 48(9): 2123-2133. [62]Peeters B, Bacroix B, Teodosiu C, et al. Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain. Part II: TEM observations of dislocation sheets in an IF steel during two-stage strain paths and their representation in terms of dislocation densities[J]. Acta Materialia, 2001, 49(9): 1621-1632. [63]Holmedal B, Houtte P V, An Y. A crystal plasticity model for strain-path changes in metals[J]. International Journal of Plasticity, 2008, 24(8): 1360-1379. [64]Beyerlein I J, Lebensohn R A, Tomé C N. Modeling texture and microstructural evolution in the equal channel angular extrusion process[J]. Materials Science and Engineering A, 2003, 345(1-2): 122-138. [65]Beyerlein I J, Tomé C N. Modeling transients in the mechanical response of copper due to strain path changes[J]. International Journal of Plasticity, 2007, 23(4): 640-664. [66]Molinari A, Canova G R, Ahzi S. A self consistent approach of the large deformation polycrystal viscoplasticity[J]. Acta Metallurgica, 1987, 35(12): 2983-2994. [67]Lebensohn R A, Tomé C N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys[J]. Acta Metallurgica et Materialia, 1993, 41(9): 2611-2624. [68]Lebensohn R A, Canova G R. A self-consistent approach for modelling texture development of two-phase polycrystals: Application to titanium alloys[J]. Acta Materialia, 1997, 45(9): 3687-3694. [69]Tome C N, Lebensohn R A. Manual for Code Visco-Plastic Self-Consistent (VPSC)[D]. California: University of California,2007. [70]Zhao T Z, Zhang G L, Song H W, et al. The evolution of strain path in cold wire drawing[J]. American Institute of Physics (AIP) Conference Proceedings, 2013, 1532(1): 754-762. [71]Zhao T Z, Zhang G L, Song H W, et al. Crystallographic texture difference between center and sub-surface of thin cold-drawn pearlitic steel wires[J]. Journal of Materials Engineering and Performance, 2014, 23(9): 3279-3284. [72]Zhao T Z, Zhang S H, Zhang G L, et al. Hardening and softening mechanisms of pearlitic steel wire under torsion[J]. Materials & Design, 2014, 59: 397-405. [73]赵天章, 宋鸿武, 张光亮, 等. 拉拔过程中珠光体钢丝心部的织构演化规律及其对力学性能的影响[J]. 金属学报, 2014, 50(6): 667-673.Zhao T Z, Song H W, Zhang G L, et al. The texture evolution at the center of pearlitic steel wire during drawing and its influence on the mechanical properties[J]. Acta Metallurgica Sinica, 2014, 50(6): 667-673. [74]赵天章. 珠光体钢丝冷拉拔过程中应变路径效应的研究[D]. 北京:中国科学院大学, 2014.Zhao T Z. Strain Path Effects on the Pearlitic Steel Wire during Cold Drawing[D].Beijing: Chinese Academy of Sciences, 2014. [75]Song G S, Zhang S H, Zheng L, et al. Twinning, grain orientation and texture variation of AZ31 Mg alloy during compression by EBSD tracing[J]. Journal of Alloys and Compounds, 2011, 509(22): 6481-6488. [76]郑黎, 张士宏, 何维均, 等. 晶体塑性模型描述多晶体循环加载中的Bauschinger效应[J]. 材料科学与工艺, 2014, 22(6): 78-84.Zheng L, Zhang S H, He W J, et al. Description of Bauschinger effect of polycrystalline during cyclic loading by crystal plasticity model[J]. Material Science and Technology, 2014, 22(6): 78-84. [77]Song G S, Chen Q Q, Zhang S H, et al. Deformation micro-mechanism for compression of magnesium alloys at room temperature analyzed by electron backscatter diffraction[J]. Materials & Design, 2015, 65: 534-542. [78]Xu Y, Zhang S, Song H, et al. The enhancement of transformation induced plasticity effect on austenitic stainless steels by cyclic tensile loading and unloading[J]. Materials Letters, 2011, 65(11): 1545-1547. [79]Xu Y, Zhang S H, Cheng M, et al. In situ X-ray diffraction study of martensitic transformation in austenitic stainless steel during cyclic tensile loading and unloading[J]. Scripta Materialia, 2012, 67(9): 771-774. [80]徐勇, 张士宏, 程明, 等. 加载方式对奥氏体不锈钢力学性能和马氏体相变的影响[J]. 金属学报, 2013, 49(7): 775-782.Xu Y, Zhang S H, Cheng M, et al. Effect of loading modes on mechanical property and strain induced martensite transformation of austenitic stainless steels[J]. Acta Metallurgica Sinica, 2013, 49(7): 775-782. [81]范瑞麟, 陈军. 考虑冲压变形历史的汽车结构特性有限元分析[J]. 塑性工程学报, 2009, 16(3): 18-23.Fan R L, Chen J. Automotive structure performance analysis considering the effect of stamping history[J]. Journal of Plasticity Engineering, 2009, 16(3): 18-23. [82]刘振勇, 李亚光, 李大永. 5754-H111铝合金板材成形极限实验及数值模拟[J]. 锻压技术, 2014, 39(1): 35-40.Liu Z Y, Li Y G, Li D Y. Forming limit experiment and numerical simulation of 5754-H111 aluminum alloy sheet[J]. Forging & Stamping Technology, 2014, 39(1): 35-40. [83]徐珂. 汽车用双相钢板成形性能及应变路径影响规律研究[D]. 合肥:合肥工业大学, 2012.Xu K. Research on the Forming Characteristic of Dual-Phase Steel for Automobile and its Effect on Strain Path[D]. Hefei: Hefei University of Technology, 2012. [84]皇涛, 詹梅, 曹刚, 等. TA18高强钛管数控弯曲变形历史特征[J]. 塑性工程学报, 2014, 21(2): 81-87.Huang T, Zhan M, Cao G, et al. Research on variation characteristic of stress and strain in NC bending of TA18 high strength titanium alloy tube[J]. Journal of Plasticity Engineering, 2014, 21(2): 81-87.
|