网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
金属力学行为中应变路径效应的研究进展
英文标题:Development of strain path effects on the mechanical behaviors of metals
作者:赵天章 张士宏 程明 张凌云 
单位:沈阳航空航天大学 中国科学院金属研究所 
关键词:应变路径 力学行为 变形 位错 晶体学织构 纤维组织 
分类号:TG301
出版年,卷(期):页码:2016,41(10):1-10
摘要:

在塑性加工中,金属的力学行为强烈依赖于所经历的应变路径;另外,有限元数值计算领域对应变路径效应的研究需求也越来越迫切。因此,应变路径效应的研究重新受到研究者的关注。结合文献调研和研究经历,详细介绍了目前应变路径效应的研究进展。首先介绍了应变路径的表征方法,并分析了各个表征方法的适用范围和局限性。其次,综述了应变路径对金属力学行为的影响规律,分析了导致应变路径效应的微观机理,并介绍了现有的几种考虑应变路径效应的数值模型,以及应变路径效应在塑性加工技术中的应用。最后,对金属材料力学行为中应变路径效应未来的研究方向进行了展望。

During metal plastic forming, the mechanical behavior strongly depends on the strain path. In addition, the investigation of strain path effects is demanded more and more urgently in finite element numerical calculation. Therefore, it attracts many concerns again recently. Based on the literature survey and investigating experience, the development of strain path effects was introduced in detail. Firstly, the expression of strain path was introduced, and its application and localization were analyzed. Secondly, the influence of strain path on mechanical behaviors of metal was reviewed, and the micro mechanisms were also analyzed. Then, several numerical models considering strain path effects were introduced, and the applications of strain path effects in metal forming technology were reviewed. Finally, the prospects of future research direction for strain path effects in mechanical behaviors of metal were given.

基金项目:
国家自然科学基金资助项目(51605310);辽宁省教育厅科研项目(L201631)
作者简介:
作者简介:赵天章(1987-),男,博士,讲师 E-mail:tzzhao@alum.imr.ac.cn
参考文献:


[1]Cetlin P, Corrêa E, Aguilar M. The effect of the strain path on the work hardening of austenitic and ferritic stainless steels in axisymmetric drawing[J]. Metallurgical and Materials Transactions A, 2003, 34(3): 589-601.
[2]Skolyszewski A, Luksza J, Packo M. Some problems of multi-stage fine wire drawing of high-alloy steels and special alloys[J]. Journal of Materials Processing Technology, 1996, 60(1): 155-160.
[3]Schmitt J H, Shen E L, Raphanel J L. A parameter for measuring the magnitude of a change of strain path: Validation and comparison with experiments on low carbon steel[J]. International Journal of Plasticity, 1994, 10(5): 535-551.
[4]Rauch E F, Gracio J J, Barlat F, et al. Modelling the plastic behaviour of metals under complex loading conditions[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19(3): 100-106.
[5]Van Riel M, Van Den Boogaard A H. Stress-strain responses for continuous orthogonal strain path changes with increasing sharpness[J]. Scripta Materialia, 2007, 57(5): 381-384.
[6]Van Den Boogaard A H, Van Riel M. Non-proportional deformation paths for sheet metal: experiments and models[A]. Hora P. 3rd Forming Technology Forum Zurich 2009 - Constitutive Modeling of Kinematic and Anisotropic Hardening Effects for Ductile Materials, Institute of Virtual Manufacturing, ETH Zurich[C]. Zurich, Switzerland, 2009.
[7]Van Riel M. Strain Path Dependency in Sheet Metal[D]. Enschede: Universiteit Twente, 2009.
[8]尹建成. 应变路径对907A钢力学行为的影响[D] . 哈尔滨:哈尔滨工程大学, 2002.Yin J C. The Influece of Strain Path on Mechanical Behaviors of Steel 907A[D]. Harbin: Harbin Engineering University, 2002.
[9]Barlat F, Gracio J J, Lee M G, et al. An alternative to kinematic hardening in classical plasticity[J]. International Journal of Plasticity, 2011, 27(9): 1309-1327.
[10]Hasegawa T, Yakou T. “Region of constant flow stress” during compression of aluminium polycrystals prestrained by tension[J]. Scripta Metallurgica, 1974, 8(8): 951-954.
[11]Hasegawa T, Yakou T, Karashima S. Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium[J]. Materials Science and Engineering, 1975, 20: 267-276.
[12]Hasegawa T, Yakou T. Effects of stress reversal and thermal recovery on stress vs strain behavior in aluminum[J]. Scripta Metallurgica, 1980, 14(10): 1083-1087.
[13]Hasegawa T, Yakou T, Kocks U F. Forward and reverse rearrangements of dislocations in tangled walls[J]. Materials Science and Engineering, 1986, 81: 189-199.
[14]Li F, Bate P S. Strain path change effects in cube textured aluminium sheet[J]. Acta Metallurgica et Materialia, 1991, 39(11): 2639-2650.
[15]Wagoner R H, Laukonis J V. Plastic behavior of aluminum-killed steel following plane-strain deformation[J]. Metallurgical Transactions A, 1983, 14(7): 1487-1495.
[16]Yakou T, Hasegawa T, Karashima S. Stagnation of strain hardening during reversed straining of prestrained aluminium, copper and iron[J]. Transactions of the Japan Institute of Metals, 1985, 26(2): 88-93.
[17]Barlat F, Ferreira Duarte J M, Gracio J J, et al. Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample[J]. International Journal of Plasticity, 2003, 19(8):1215-1244.
[18]Rousselier G, Barlat F, Yoon J W. A novel approach for anisotropic hardening modeling-Part I: Theory and its application to finite element analysis of deep drawing[J]. International Journal of Plasticity, 2009, 25(12): 2383-2409.
[19]Rousselier G, Barlat F, Yoon J W. A novel approach for anisotropic hardening modeling-Part II: Anisotropic hardening in proportional and non-proportional loadings, application to initially isotropic material[J]. International Journal of Plasticity, 2010, 26(7): 1029-1049.
[20]Hu Z, Rauch E F, Teodosiu C. Work-hardening behavior of mild steel under stress reversal at large strains[J]. International Journal of Plasticity, 1992, 8(7): 839-856.
[21]Hu Z. Work-hardening behavior of mild steel under cyclic deformation at finite strains[J]. Acta Metallurgica et Materialia, 1994, 42(10): 3481-3491.
[22]Thuillier S, Rauch E F. Development of microbands in mild steel during cross loading[J]. Acta Metallurgica et Materialia, 1994, 42(6): 1973-1983.
[23]Corrêa E C S, Melo Filho L D R, Aguilar M T P, et al. The effect of cyclic straining on the drawing stress of low carbon steel bars[J]. Materials Chemistry and Physics, 2005, 94(2-3): 376-381.
[24]Wilson D V. Reversible work hardening in alloys of cubic metals[J]. Acta Metallurgica, 1965, 13(7): 807-814.
[25]Wilson D V, Zandrahimi M, Roberts W T. Effects of changes in strain path on work-hardening in CP aluminium and an Al/Cu/Mg alloy[J]. Acta Metallurgica et Materialia, 1990, 38(2): 215-226.
[26]Wilson D V, Bate P S. Influences of cell walls and grain boundaries on transient responses of an if steel to changes in strain path[J]. Acta Metallurgica et Materialia, 1994, 42(4): 1099-1111.
[27]Nesterova E V, Bacroix B, Teodosiu C. Microstructure and texture evolution under strain-path changes in low-carbon interstitial-free steel[J]. Metallurgical and Materials Transactions A, 2001, 32(10): 2527-2538.
[28]Kuwabara T, Ikeda S, Kuroda K. Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension[J]. Journal of Materials Processing Technology, 1998, 80–81: 517-523.
[29]Meng B, Wan M, Wu X, et al. Constitutive modeling for high-temperature tensile deformation behavior of pure molybdenum considering strain effects[J]. International Journal of Refractory Metals and Hard Materials, 2014, 45: 41-47.
[30]韩非, 万敏, 吴向东. 板料成形极限理论与实验研究进展[J]. 塑性工程学报, 2006, 13(5): 80-86.Han F, Wan M, Wu X D. Theoretical and experimental investigation progress on the forming limit of sheet metal forming[J]. Journal of Plasticity Engineering, 2006, 13(5): 80-86.
[31]万敏,周贤宾. 复杂加载路径下板料屈服强化与成形极限的研究进展[J]. 塑性工程学报, 2000, 7(2): 36-39.Wan M, Zhou X B. Research progress on the yielding, hardening and forming limit of sheet metals under complex loading paths[J]. Journal of Plasticity Engineering, 2000, 7(2): 36-39.
[32]王海波, 万敏, 阎昱, 等. 参数求解方法对屈服准则的各向异性行为描述能力的影响[J]. 机械工程学报, 2013, 49(24): 45-52.Wang H B, Wan M, Yan Y, et al. Effect of the solving method of parameters on the description ability of the yield criterion about the anisotropic behavior[J]. Journal of Mechanical Engineering, 2013, 49(24): 45-52.
[33]王文平, 刁可山, 吴向东, 等. 板料屈服行为及强化规律的研究进展[J]. 机械工程学报, 2013, 49(24): 7-14.Wang W P, Diao K S, Wu X D, et al. Review on yielding and hardening behavior of sheet metal[J]. Journal of Mechanical Engineering, 2013, 49(24): 7-14.
[34]Raphanel J L, Schmitt J H, Baudelet B. Effect of a prestrain on the subsequent yielding of low carbon steel sheets: Experiments and simulations[J]. International Journal of Plasticity, 1986, 2(4): 371-378.
[35]Juul Jensen D, Hansen N. Flow stress anisotropy in aluminium[J]. Acta Metallurgica et Materialia, 1990, 38(8): 1369-1380.
[36]Liu Q, Juul Jensen D, Hansen N. Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium[J]. Acta Materialia, 1998, 46(16): 5819-5838.
[37]Hansen N, Huang X. Microstructure and flow stress of polycrystals and single crystals[J]. Acta Materialia, 1998, 46(5): 1827-1836.
[38]Hansen N, Huang X, Pantleon W, et al. Grain orientation and dislocation patterns[J]. Philosophical Magazine, 2006, 86(25-26): 3981-3994.
[39]Hansen N, Jensen D J. Development of microstructure in FCC metals during cold work[J]. Philosophical Transactions of the Royal Society of London-Series A: Mathematical, Physical and Engineering Sciences, 1999, 357(1756): 1447-1469.
[40]Rauch E F, Gracio J J, Barlat F. Work-hardening model for polycrystalline metals under strain reversal at large strains[J]. Acta Materialia, 2007, 55(9): 2939-2948.
[41]Rauch E F, G'Sell C. Flow localization induced by a change in strain path in mild steel[J]. Materials Science and Engineering: A, 1989, 111: 71-80.
[42]Rauch E F, Schmitt J H. Dislocation substructures in mild steel deformed in simple shear[J]. Materials Science and Engineering: A, 1989, 113: 441-448.
[43]Rauch E F, Thuillier S. Rheological behaviour of mild steel under monotonic loading conditions and cross-loading[J]. Materials Science and Engineering: A, 1993, 164(1-2): 255-259.
[44]Feltner C E, Laird C. Cyclic stress-strain response of F.C.C. metals and alloys-II:Dislocation structures and mechanisms[J]. Acta Metallurgica, 1967, 15(10): 1633-1653.
[45]Christodoulou N, Woo O T, MacEwen S R. Effect of stress reversals on the work hardening behaviour of polycrystalline copper[J]. Acta Metallurgica, 1986, 34(8): 1553-1562.
[46]Vincze G, Rauch E F, Gracio J J, et al. A comparison of the mechanical behaviour of an AA1050 and a low carbon steel deformed upon strain reversal[J]. Acta Materialia, 2005, 53(4): 1005-1013.
[47]Peeters B, Seefeldt M, Teodosiu C, et al. Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain paths. I: An integrated model based on substructure and texture evolution, and its prediction of the stress-strain behaviour of an IF steel during two-stage strain paths[J]. Acta Materialia, 2001, 49(9): 1607-1619.
[48]Zhao T Z, Zhang G L, Song H W, et al. Influences of simple strain path changes on mechanical behaviours of pearlitic steel wire[J]. Materials Science and Technology, 2015, 31(3): 310-316.
[49]Teodosiu C, Hu Z. Evolution of the intragranular microstructure at moderate and large strains: modelling and computational significance[A]. Shen S F, Dawson P R. Numiform 1995[C]. Rotterdam,Netherlands, 1995.
[50]Li S, Hoferlin E, Bael A V, et al. Finite element modeling of plastic anisotropy induced by texture and strain-path change[J]. International Journal of Plasticity, 2003, 19(5): 647-674.
[51]Haddadi H, Bouvier S, Banu M, et al. Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: Modelling, numerical analysis and identification[J]. International Journal of Plasticity, 2006, 22(12): 2226-2271.
[52]Haddag B, Balan T, Abed Meraim F. Investigation of advanced strain-path dependent material models for sheet metal forming simulations[J]. International Journal of Plasticity, 2007, 23(6): 951-979.
[53]Wang J, Levkovitch V, Reusch F, et al. On the modeling of hardening in metals during non-proportional loading[J]. International Journal of Plasticity, 2008, 24(6): 1039-1070.
[54]Kocks U F. Laws for work-hardening and low-temperature creep[J]. Journal of Engineering Materials and Technology, 1976, 98(1): 76-85.
[55]Mecking H, Kocks U F. Kinetics of flow and strain-hardening[J]. Acta Metallurgica, 1981, 29(11): 1865-1875.
[56]Kocks U F, Mecking H. Physics and phenomenology of strain hardening: the FCC case[J]. Progress in Materials Science, 2003, 48(3): 171-273.
[57]Lee J W, Lee M G, Barlat F. Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction[J]. International Journal of Plasticity, 2012, 29: 13-41.
[58]Lee J Y, Lee J W, Lee M G, et al. An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw/bending[J]. International Journal of Solids and Structures, 2012, 49(25): 3562-3572.
[59]He W J, Zhang S H, Song H W. An extended homogenous yield function based anisotropic hardening model for description of anisotropic hardening behavior of materials[J]. International Journal of Mechanical Sciences, 2013, 77: 343-355.
[60]Barlat F, Vincze G, Grácio J J, et al. Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels[J]. International Journal of Plasticity, 2014, 58: 201-218.
[61]Peeters B, Kalidindi S R, Van Houtte P, et al. A crystal plasticity based work-hardening/softening model for b.c.c. metals under changing strain paths[J]. Acta Materialia, 2000, 48(9): 2123-2133.
[62]Peeters B, Bacroix B, Teodosiu C, et al. Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain. Part II: TEM observations of dislocation sheets in an IF steel during two-stage strain paths and their representation in terms of dislocation densities[J]. Acta Materialia, 2001, 49(9): 1621-1632.
[63]Holmedal B, Houtte P V, An Y. A crystal plasticity model for strain-path changes in metals[J]. International Journal of Plasticity, 2008, 24(8): 1360-1379.
[64]Beyerlein I J, Lebensohn R A, Tomé C N. Modeling texture and microstructural evolution in the equal channel angular extrusion process[J]. Materials Science and Engineering A, 2003, 345(1-2): 122-138.
[65]Beyerlein I J, Tomé C N. Modeling transients in the mechanical response of copper due to strain path changes[J]. International Journal of Plasticity, 2007, 23(4): 640-664.
[66]Molinari A, Canova G R, Ahzi S. A self consistent approach of the large deformation polycrystal viscoplasticity[J]. Acta Metallurgica, 1987, 35(12): 2983-2994.
[67]Lebensohn R A, Tomé C N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys[J]. Acta Metallurgica et Materialia, 1993, 41(9): 2611-2624.
[68]Lebensohn R A, Canova G R. A self-consistent approach for modelling texture development of two-phase polycrystals: Application to titanium alloys[J]. Acta Materialia, 1997, 45(9): 3687-3694.
[69]Tome C N, Lebensohn R A. Manual for Code Visco-Plastic Self-Consistent (VPSC)[D]. California: University of California,2007.
[70]Zhao T Z, Zhang G L, Song H W, et al. The evolution of strain path in cold wire drawing[J]. American Institute of Physics (AIP) Conference Proceedings, 2013, 1532(1): 754-762.
[71]Zhao T Z, Zhang G L, Song H W, et al. Crystallographic texture difference between center and sub-surface of thin cold-drawn pearlitic steel wires[J]. Journal of Materials Engineering and Performance, 2014, 23(9): 3279-3284.
[72]Zhao T Z, Zhang S H, Zhang G L, et al. Hardening and softening mechanisms of pearlitic steel wire under torsion[J]. Materials & Design, 2014, 59: 397-405.
[73]赵天章, 宋鸿武, 张光亮, 等. 拉拔过程中珠光体钢丝心部的织构演化规律及其对力学性能的影响[J]. 金属学报, 2014, 50(6): 667-673.Zhao T Z, Song H W, Zhang G L, et al. The texture evolution at the center of pearlitic steel wire during drawing and its influence on the mechanical properties[J]. Acta Metallurgica Sinica, 2014, 50(6): 667-673.
[74]赵天章. 珠光体钢丝冷拉拔过程中应变路径效应的研究[D]. 北京:中国科学院大学, 2014.Zhao T Z. Strain Path Effects on the Pearlitic Steel Wire during Cold Drawing[D].Beijing: Chinese Academy of Sciences, 2014.
[75]Song G S, Zhang S H, Zheng L, et al. Twinning, grain orientation and texture variation of AZ31 Mg alloy during compression by EBSD tracing[J]. Journal of Alloys and Compounds, 2011, 509(22): 6481-6488.
[76]郑黎, 张士宏, 何维均, 等. 晶体塑性模型描述多晶体循环加载中的Bauschinger效应[J]. 材料科学与工艺, 2014, 22(6): 78-84.Zheng L, Zhang S H, He W J, et al. Description of Bauschinger effect of polycrystalline during cyclic loading by crystal plasticity model[J]. Material Science and Technology, 2014, 22(6): 78-84.
[77]Song G S, Chen Q Q, Zhang S H, et al. Deformation micro-mechanism for compression of magnesium alloys at room temperature analyzed by electron backscatter diffraction[J]. Materials & Design, 2015, 65: 534-542.
[78]Xu Y, Zhang S, Song H, et al. The enhancement of transformation induced plasticity effect on austenitic stainless steels by cyclic tensile loading and unloading[J]. Materials Letters, 2011, 65(11): 1545-1547.
[79]Xu Y, Zhang S H, Cheng M, et al. In situ X-ray diffraction study of martensitic transformation in austenitic stainless steel during cyclic tensile loading and unloading[J]. Scripta Materialia, 2012, 67(9): 771-774.
[80]徐勇, 张士宏, 程明, 等. 加载方式对奥氏体不锈钢力学性能和马氏体相变的影响[J]. 金属学报, 2013, 49(7): 775-782.Xu Y, Zhang S H, Cheng M, et al. Effect of loading modes on mechanical property and strain induced martensite transformation of austenitic stainless steels[J]. Acta Metallurgica Sinica, 2013, 49(7): 775-782.
[81]范瑞麟, 陈军. 考虑冲压变形历史的汽车结构特性有限元分析[J]. 塑性工程学报, 2009, 16(3): 18-23.Fan R L, Chen J. Automotive structure performance analysis considering the effect of stamping history[J]. Journal of Plasticity Engineering, 2009, 16(3): 18-23.
[82]刘振勇, 李亚光, 李大永. 5754-H111铝合金板材成形极限实验及数值模拟[J]. 锻压技术, 2014, 39(1): 35-40.Liu Z Y, Li Y G, Li D Y. Forming limit experiment and numerical simulation of 5754-H111 aluminum alloy sheet[J]. Forging & Stamping Technology, 2014, 39(1): 35-40.
[83]徐珂. 汽车用双相钢板成形性能及应变路径影响规律研究[D]. 合肥:合肥工业大学, 2012.Xu K. Research on the Forming Characteristic of Dual-Phase Steel for Automobile and its Effect on Strain Path[D]. Hefei: Hefei University of Technology, 2012.
[84]皇涛, 詹梅, 曹刚, 等. TA18高强钛管数控弯曲变形历史特征[J]. 塑性工程学报, 2014, 21(2): 81-87.Huang T, Zhan M, Cao G, et al. Research on variation characteristic of stress and strain in NC bending of TA18 high strength titanium alloy tube[J]. Journal of Plasticity Engineering, 2014, 21(2): 81-87.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9