[1]刘杰辉,王桂霞,刘永康. 基于灰色理论和神经网络的轧制力预测[J]. 锻压技术,2015,40(10):126-129.
Liu J H,Wang G X,Liu Y K. Prediction of rolling force based on grey theory and neural network[J]. Forging & Stamping Technology,2015,40(10):126-129.
[2]陶红勇,王京,陆秀志. 神经网络在板形控制中的应用[J]. 轧钢,2003,20(4): 10-12.
Tao H Y,Wang J,Lu X Z. Application of neural network in shape control[J]. Steel Rolling,2003,20(4): 10-12.
[3]Glorot X,Bordes A,Bengio Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research,2010,15:315-318.
[4]Hinton G,Osindero S. A fast learning algorithm for deep belief nets[J]. Neural Computation,2006,18(7):1527-1554.
[5]Larochelle H,Bengio Y,Louradour J,et al. Exploring strategies for training deep neural networks [J]. Journal of Machine Learning Research,2009,10(12):1-40.
[6]Yu D,Deng L. Deep learning and its applications to signal and information processing[J]. IEEE Signal Processing Magazine,2011,28(1):145-154.
[7]Deng L,Yu D. Deep Learning: Methods and Applications [M]. USA, Hanover:NOW Publishers,2014.
|