网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
磁脉冲胀形管件材料本构参数识别方法
英文标题:Indentifying constitutive parameters of magnetic pulse bulging tube
作者:单业奇 崔俊佳         
单位:湖南大学 
关键词:磁脉冲胀形管件 材料本构参数反求 轴向压溃 显微压痕试验 多岛遗传算法 
分类号:TG391
出版年,卷(期):页码:2016,41(9):71-79
摘要:

 磁脉冲自由胀形后的管件沿轴向材料分布不均匀,且由于其特殊的几何形状无法通过单向拉伸试验获取其材

 
料参数。为获取磁脉冲胀形管的材料参数,提出了一种基于显微压痕试验的磁脉冲自由胀形管件材料参数的
 
获取方法,整个材料参数获取过程包括显微压痕试验、显微压痕试验有限元模型的建立及验证和基于多岛遗
 
传算法(MIGA)的计算反求3部分。通过显微压痕试验获取胀形管轴向不同位置点处的载荷-侵入量曲线,然
 
后通过改变显微压痕有限元模型中的材料参数使仿真得到的载荷-侵入量曲线不断逼近试验的载荷-侵入量曲
 
线,当两曲线在最小二乘意义上达到误差最小时,由仿真得到的材料参数即被认为是真实的材料参数。最后
 
,将反求得到的不同位置点的材料参数整体代入到磁脉冲自由胀形管轴向压溃仿真中,通过比较轴向压溃仿
 
真与轴向压溃试验的变形模式以及力-位移曲线、峰值力、平均力、总吸能等参数来验证参数的准确性。
 

 The material distribution of the magnetic pulse bulging tube is uneven along the axial 

 
direction, and its material parameters cannot be obtained by the uniaxial tensile test because 
 
of its special geometry. To obtain the material parameters of magnetic pulse bulging tube, a 
 
method based on the micro-indentation test was put forward, and its obtaining progress 
 
included the micro-indentation test, the validation of the finite model of micro-indentation 
 
test and the inverse seeking process based on the multi-island genetic algorithm(MIGA). The 
 
load-depth curve of magnetic pulse bulging tube at different locations was obtained by the 
 
micro-indentation test, and the load-depth curve obtained by the simulation was approached the 
 
micro-indentation test curves constantly by changing the material parameters in the finite 
 
element model. The material parameters in the finite model were considered to be the real 
 
material parameters of the magnetic pulse bulging tube, when the two curves achieved the 
 
minimum error in the least-squares sense. Finally, the material parameters in different 
 
locations of the magnetic pulse bulging tube were used into the axial crushing simulation, and 
 
the accuracy of parameters was verified by comparing forming type, the force-displacement 
 
curve, the mean force and total energy absorption obtained of the stimulation results with 
 
those of the experimental results. 
基金项目:
国家自然科学基金资助项目(51505139)
作者简介:
单业奇(1989-),男,硕士研究生
参考文献:

 
[1]   Hanssen A G, Langseth M, Hopperstad O S. Static and dynamic crushing of circular 


 

aluminium extrusions with aluminium foam filler[J]. International Journal of Impact 

 

Engineering,2000, 24: 475-507. 

 


[2]   Lee M G, Kim D, Kim C, et al. Spring-back evaluation of automotive sheets based on 

 

isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions Part II[J]. 

 

Characterization of Material Properties, 2005,21: 883-914. 

 


[3]   Kleiner M, Geiger M, Klaus A. Manufacturing of lightweight components by metal forming

 

[J]. CIRP Annals-Manufacturing Technology,2003,52: 521-542.

 


[4]   Daehn G S, Altynova M, Balanethiram V S, et al. High-velocity metal forming—An old 

 

technology addresses new problems[J]. JOM, 1995, 47(7): 42-45.

 


[5]   庞桂兵, 张赟阁, 赵益昕, 等. 高速率成形技术进展[J]. 大连工业大学学报, 2014,33(5):381

 

-386.

 

Pang G B, Zhang Y G, Zhao Y X, et al. Advance in high speed forming technology[J]. Journal 

 

of Dalian Polytechnic University, 2014,33(5):381-386.

 


[6]   韩玉杰, 侯红亮, 于海平, 等. 5A02 铝合金磁脉冲胀形试验与模拟研究[J]. 锻压技术, 2015, 

 

40(4): 33-39.

 

Han Y J, Hou H L, Yu H P, et al. Experiment and simulation of magnetic pulse bulge forming for 

 

Al alloy 5A02[J]. Forging & Stamping Technology, 2015, 40(4): 33-39.

 


[7]   田钰清, 张敏, 魏巍, 等. 矩形线圈电磁成形磁场力数值模拟分析[J]. 锻压技术, 2015, 40

 

(6): 165-170.

 

Tian Y Q, Zhang M, Wei W, et al. Research on electromagnetic force of rectangular coil in 

 

electromagnetic forming[J]. Forging & Stamping Technology, 2015, 40(6): 165-170.

 


[8]   钟志华,李光耀.薄板冲压成型过程的计算机仿真与应用
[M ]. 北京: 北京理工大学出版社, 

 

1998.

 

Zhong Z H, Li G Y. Principle and Application of Computer Simulation Technique in Sheet Forming 

 

[M]. Beijing: Beijing Institute of Technology Press, 1998. 

 


[9]   高晖,郑刚,李光耀.基于响应面方法的材料参数反求[J].机械工程学报,2008,44 (8):102-

 

105.

 

Gao H, Zheng G, Li G Y. Indentification of material parameters based on the response surface 

 

method[J]. Chinese Journal of Mechanical Engineering, 2008,44 (8):102-105.


[10]曹银锋,李光耀,钟志华.金属成型材料参数的反求技术[J]. 计算力学学报,2004,21 (3): 292

 

-296.

 

Cao Y F, Li G Y, Zhong Z H. An inverse method for material parameters in metal forming[J]. 

 

Chinese Journal of Computational Mechanics, 2004,21 (3): 292-296.

 


[11]Li X Q, He D H. Identification of material parameters from punch stretch test[J]. 

 

Transactions of Nonferrous Metals Society of China, 2013, 23(5): 1435-1441.

 


[12]Bocciarelli M, Bolzon G, Maier G. Parameter identification in anisotropic 

 

elastoplasticity by indentation and imprint mapping[J]. Mechanics of Materials, 2005, 37(8): 

 

855-868.

 


[13]Zhan M, Du H F, Liu J, et al. A method for establishing the plastic constitutive 

 

relationship of the weld bead and heat-affected zone of welded tubes based on the rule of 

 

mixtures and a microhardness test[J]. Materials Science and Engineering: A, 2010, 527(12): 

 

2864-2874.

 


[14]Kang J J, Becker A A, Sun W. Determining elastic–plastic properties from indentation 

 

data obtained from finite element simulations and experimental results[J]. International 

 

Journal of Mechanical Sciences, 2012, 62(1): 34-46.

 


[15]Sun G Y, Xu F X, Li G Y, et al. Determination of mechanical properties of the weld line 

 

by combining micro-indentation with inverse modeling[J]. Computational Materials Science, 

 

2014, 85: 347-362.

 


[16]乔良, 宋小欣, 谢延敏, 等. 基于动态 RBF 代理模型的板料本构参数反求研究[J]. 锻压技术, 

 

2014, 39(3): 145-150.

 

Jiao L, Song X X, Xie Y M, et al. Research of sheet metal constitutive parameters inverse 

 

based on dynamic RBF surrogate model[J]. Forging & Stamping Technology, 2014, 39(3): 145-

 

150.

 


[17]宋昕, 谷正气, 张清林, 等. 基于多岛遗传算法的湍流模型优化研究[J]. 湖南大学学报: 自然科

 

学版, 2011, 38(2): 23-29.

 

Song X, Gu Z Q, Zhang Q L, et al. Study of the turbulence model optimization based on multi-

 

island genetic algorithm[J]. Journal of Hunan University:Natural Sciences, 2011, 38(2): 23-

 

29.

 


[18]Fan Z, Lu G, Liu K. Quasi-static axial compression of thin-walled tubes with different 

 

cross-sectional shapes[J]. Engineering Structures, 2013, 55: 80-89.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9