网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于改进的BP-NSGAⅡ算法的注塑工艺参数优化
英文标题:Optimization on injection process parameters based on an improved BP-NSGA Ⅱ algorithm
作者:曹志勇 幸俊龙 夏巨谌 王新云 
单位:华中科技大学 湖北大学 
关键词:注塑工艺 Pareto最优解 正交试验 BP神经网络 NSGAⅡ算法 
分类号:TG309
出版年,卷(期):页码:2016,41(11):135-142
摘要:
注塑成形工艺优化的目标就是要在设备固定、原料配方不变的情况下,将保证质量和提高效率两者协调一致,以达到最理想的成形工艺。首先建立了以产品质量和生产效率为目标函数,以模具温度、熔体温度、保压压力、保压时间和冷却时间等为决策变量的多目标综合优化模型。利用BP神经网络的强大的非线性插值能力和自我学习能力来训练模型样本数据,最后结合改进的非支配排序遗传算法(NSGAⅡ)的全局寻优和多目标优化求解能力,得出最优的注塑工艺设计。

The goal of the optimization on injection molding process is to ensure both the quality and efficiency under remaining equipment and materials to achieve the ideal forming process. Firstly, the objective function with quality and efficiency was confirmed, then the integrated optimization model was constructed with multi-objective decision variables of mold temperature, melt temperature, packing pressure, dwell time and cooling time. Furthermore, the sample data of model were trained by the powerful non-linear interpolation and self-learning ability of BP network. In the end, the optimal injection designing process was obtained by combining the global and multi-objection optimization ability of the improved Non-dominated Sorting Genetic AlgorithmsⅡ.

基金项目:
国家自然科学基金青年项目(51205144)
作者简介:
曹志勇(1972-),男,博士研究生 王新云(1973-),男,博士,教授
参考文献:


[1]Altan M.Reducing shrinkage in injection moldings via the Taguchi,ANOVA and neural network methods[J].Materials and Design,2010,3l:599-604.
[2]Ozcelik B, Ozbay A, Demirbas E. Influence of injection parameters and mold materials on mechanical properties of ABS in Plastic injection molding[J].Intemational Communications in Heat and Mass Transfer,2010;
37:1359-1365.
[3]周浩文. 基于人工神经网络的注塑成形模拟及工艺参数优化的研究[D]. 广州: 广东工业大学, 2013.Zhou H W. Optimization of the Injection Molding Simulation and Process Parameters based on Artificial Neural Network[D]. Guangzhou:Guangdong University of Technology, 2013.
[4]时慧焯. 基于人工神经网络的注塑成形翘曲优化方法[D]. 大连:大连理工大学, 2012.Shi H Z. Warpage Optimization Methods Based on Artificial Neural Network in Injection Molding[D]. Dalian:Dalian University of Technology,2012.
[5]时慧焯, 王希诚. 基于改进的BP神经网络的注塑成形翘曲优化设计[J]. 化工学报, 2011, 62(9): 2562-2568.Shi H Z, Wang X C. Warpage optimization of injection molding based on improved BP neural network[J]. Journal of Chemical Industry and Engineering, 2011, 62(9): 2562-2568.
[6]Yin F, Mao H, Hua L, et al. Back Propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding[J]. Materials & Design, 2011, 32(4): 1844-1850.
[7]王义. 基于遗传算法的可视电话外壳注塑模优化设计[D]. 昆明:昆明理工大学, 2010.Wang Y. Optimization Design of Videophone Injection Mold Based on Genetic Algorithm[D]. Kunming:Kunming University of Science and Technology,2010.
[8]姚文龙, 胡泽豪, 刘荣亮. 基于响应面模型和遗传算法的注塑工艺多目标优化[J]. 中国塑料, 2014, (9): 76-80.Yao W L, Hu Z H, Liu R L. Multi-objective optimization of injection process based on RAM/GA method[J]. China Plastics, 2014, (9): 76-80.
[9]Shen C, Wang L, Li Q. Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method[J]. Journal of Materials Processing Technology, 2007, 183(2): 412-418.
[10]尹飞. 基于神经网络技术和遗传算法的注塑成形工艺优化方法研究[D]. 武汉:武汉理工大学, 2012.Yin F. Research on Process Optimization Method for Plastic Injection Molding based on Artificial Neural Network and Genetic Algorithm[D]. Wuhan: Wuhan University of Technology,2012.
[11]申长雨, 王利霞, 张勤星. 神经网络与混合遗传算法结合的注塑成形工艺优化[J]. 高分子材料科学与工程, 2005, 21(5): 23-27. Shen C Y, Wang L X, Zhang Q X. Process optimization of injection molding by the combining ANN/HGA method[J]. Polymeric Materials Science and Engineering, 2005, 21(5): 23-27.
[12]王晓鹏. 多目标优化设计中的Pareto遗传算法[J]. 系统工程与电子技术, 2003, 25(12): 1558-1561.Wang X P. Pareto genetic algorithm for mufti-objective optimization design[J]. Systems Engineering and Electronics, 2003, 25(12): 1558-1561.
[13]Srinvas N, Deb K. Multi-objective function optimization using non-dominated sorting genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248.
[14]Deb K, Agrawal S, Pratap A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[A]. International Conference on Parallel Problem Solving From Nature[C]. Springer Berlin Heidelberg, 2000.
[15]王鸿斌, 张立毅, 胡志军. 人工神经网络理论及其应用[J]. 山西电子技术, 2006,(2): 41-43.Wang H B, Zhang L Y, Hu Z J. Theory on artificial neural network and its application[J]. Shanxi Electronic Technology, 2006, (2): 41-43.
[16]关志华. 非支配排序遗传算法 (NSGA) 算子分析[J]. 管理工程学报, 2004, 18(1): 56-60.Guan Z H. Opertors analysing of the nondominated sorting genetic algorithm (NSGA)[J]. Journal of Industrial Engineering and Engineering Management, 2004, 18(1): 56-60.
[17]文诗华. 多目标进化算法中变异算子的研究[D]. 湘潭:湘潭大学, 2009.Wen S H. The Research on Mutation Operators for Multi-Objective Evolutionary Algorithms[D]. Xiangtan:Xiangtan University,2009.
[18]孙军. 基于Moldflow 与正交试验的尾罩注塑工艺与模具设计[J]. 塑料工业, 2012, 40(4): 67-70.Sun J. Injection process and mold design for tail cover based on moldflow and orthogonal experiment[J]. China Plastics Industry, 2012, 40(4): 67-70.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9