网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
复合条带三阶段排样方式的生成算法
英文标题:A generating algorithm of three-stage nesting patterns for composite strip
作者:扈少华 潘立武 管卫利 
单位:河南牧业经济学院 南宁学院 
关键词:剪切排样 复合条带 三阶段排样方式 背包算法 板材切割 
分类号:TP391
出版年,卷(期):页码:2016,41(11):149-152
摘要:
提出复合条带三阶段排样方式用以解决无约束二维剪切排样问题。该排样方式用3个阶段将板材切割成毛坯,首先用水平刀具将板材切成复合条带,然后用竖直刀具将复合条带切成初始毛坯,最后用水平刀具将初始毛坯切成具有精确尺寸的毛坯。采用背包算法生成该种排样方式,该算法求解两个背包模型分别生成条带在板材中的布局和毛坯在复合条带中的布局。采用文献中基准测题,将文中排样方式与文献中5种重要的排样方式进行比较。实验结果表明,文中复合条带三阶段排样方式平均排样价值高于以上5种排样方式,且切割工艺比较简单。

The three-stage nesting patterns for composite strip were proposed to solve the unconstrained two-dimensional nesting problem. Plate was cut into rectangular blanks through three stages. Firstly, the plate was cut into composite strips by the horizontal cutter, then it was cut into initial blanks by the vertical cutter. Finally, the initial blank was cut into exact size blank by the horizontal cutter. The three-stage nesting patterns for composite strip were generated by Knapsack algorithm, which solved two knapsack models to generate the layout of strips in plate and blanks in strip. The patterns were tested through benchmark problems in literature, and compared with five important patterns in literature. The experimental results show that the average value of three-stage nesting patters for composite strip is higher than that of the above five patterns, and the cutting process is relatively simple.

基金项目:
河南省科技攻关计划项目(142102210607);广西科学研究与技术开发计划(桂科攻11107006-13;桂科攻12118017-10A)
作者简介:
扈少华(1978-),男,硕士,讲师 管卫利(1979-),男,硕士,副教授
参考文献:

[1]Wscher G, Hauner H, Schumann H. An improved typology of cutting and packing problems[J]. European Journal of Operational Research, 2007, 183(3):1109-1130.
[2]季君. 基于同形块的剪切下料布局算法研究[D]. 北京:北京交通大学, 2012.Ji J. Research on Guillotine Cutting Stock Packing Algorithm Based on Same-shape Block[D]. Beijing:Beijing Jiaotong University, 2012.
[3]Cui Y D, Gu T L, Hu W. A bi-objective guillotine cutting problem of stamping strips of equal circles[J]. International Journal of Computer Mathematics, 2010, 87(12):2716-2721.
[4]Furini F, Malaguti E. Models for the two-dimensional two-stage cutting stock problem with multiple stock size[J]. Computers & Operations Research, 2013, 40(8):1953-1962.
[5]Cui Y D, Huang B X. Heuristic for constrained T-shape cutting patterns of rectangular pieces[J]. Computers & Operations Research, 2012, 39(12): 3031-3039.
[6]Cui Y D. Heuristic for two-dimensional homogeneous two-segment cutting patterns[J].Engineering Optimization, 2013,45(1):1-17.
[7]Hifi M. Exact algorithms for large-scale unconstrained two and three staged cutting problems[J].Computational Optimization and Applications, 2001, 18(1): 63-88.
[8]Cui Y D, He D, Song X. Generating optimal two-section cutting patterns for rectangular blanks[J]. Computers & Operations Research, 2006, 33(6): 1505-1520.
[9]潘卫平, 陈秋莲, 崔耀东, 等. 基于匀质条带的矩形件最优三块布局算法[J]. 图学学报, 2015, 36(1): 7-11.Pan W P, Chen Q L, Cui Y D, et al. An algorithm for generating optimal homogeneous strips three block patterns of rectangular blanks[J].Journal of Graphics, 2015, 36(1): 7-11.
[10]易向阳, 仝青山, 潘卫平. 矩形件二维下料问题的一种求解方法[J]. 锻压技术, 2015, 40(6):150-153.Yi X Y, Tong Q S, Pan W P. A solving method of two-dimensional cutting for the rectangular blanks [J].Forging & Stamping Technology, 2015, 40(6):150-153.
[11]Kellerer H, Pferschy U, Pisinger D. Knapsack Problems [M]. Berlin: Springer, 2004.
[12]Alvarez-Valdés R, Parajón A, Tamarit J M. A tabu search algorithm for large-scale guillotine (un)constrained two-dimensional cutting problems[J]. Computers & Operations Research, 2002, 29(7):925-947.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9