[1]季君. 基于同形块的剪切下料布局算法研究 [D]. 北京:北京交通大学, 2012.
Ji J. Research on Guillotine Cutting Stock Packing Algorithm Based on Same-shape Block [D]. Beijing:Beijing Jiaotong University, 2012.
[2]易向阳, 仝青山, 潘卫平. 矩形件二维下料问题的一种求解方法 [J]. 锻压技术, 2015, 40(6):150-153.
Yi X Y, Tong Q S, Pan W P. A solving method of two-dimensional cutting for the rectangular blanks [J].Forging & Stamping Technology, 2015, 40(6):150-153.
[3]Wscher G, Hauner H, Schumann H. An improved typology of cutting and packing problems [J]. European Journal of Operational Research, 2007, 183(3):1109-1130.
[4]Andrade R, Birgin E G, Morabito R. Two-stage two-dimensional guillotine cutting stock problems with usable leftover [J]. International Transactions in Operational Research, 2014, 23(1):121-145.
[5]Hadjiconstantinou E, Christofides N. An exact algorithm for general, orthogonal, two-dimensional knapsack problems [J]. European Journal of Operational Research, 1995, 83(1):39-56.
[6]Chen C S, Lee S M, Shen Q S. An analytical model for the container loading problem [J]. European Journal of Operational Research, 1995, 80(1):68-76.
[7]Cui Y. A new dynamic programming procedure for three-staged cutting patterns [J]. Journal of Global Optimization, 2013, 55(2):349-357.
[8]潘卫平, 陈秋莲, 崔耀东, 等. 基于匀质条带的毛坯最优三块布局算法 [J]. 图学学报, 2015, 36(1): 7-11.
Pan W P, Chen Q L, Cui Y D, et al. An algorithm for generating optimal homogeneous strips three block patterns of rectangular blanks [J].Journal of Graphics, 2015, 36(1): 7-11.
[9]扈少华, 黄于欣, 管卫利. 矩形毛坯五块切割排样方式的生成算法 [J]. 锻压技术, 2016,41(7):157-160.
Hu S H, Huang Y X, Guan W L. Generating algorithm of five block cutting nesting for rectangular blanks [J].Forging & Stamping Technology, 2016,41(7):157-160.
[10]Kellerer H, Pferschy U, Pisinger D. Knapsack Problems [M].Berlin: Springer, 2004.
[11]Gun Y G, Seong Y J, Kang M K. A best-first branch and bound algorithm for unconstrained two-dimensional cutting problems [J]. Operations Research Letters, 2003, 31(4):301-307.
|