[1]李奇涵, 王红强, 刘海静,等. 基于BP神经网络矩形盒件拉深成形变压边力的预测 [J]. 锻压技术, 2015, 40(11): 27-31.
Li Q H, Wang H Q, Liu H J, et al. Prediction of variable blank-holder force of rectangular box in deep drawing forming based on BP neural network [J]. Forging & Stamping Technology, 2015, 40(11): 27-31.
[2]徐石安,江发潮.汽车离合器 [M].北京:清华大学出版社,2005.
[3]吴小蓉,韩继龙.冲裁间隙对铜板断面质量影响的有限元模拟 [J].机械研究与应用,2014,27(2):87-88.
Wu X R, Han J L. Finite element simulation of blanking clearance effect on copper plate section quality [J].Mechanical Research & Application,2014,27(2):87-88.
[4]倪洪启, 王帅军, 王树强 等. BP神经网络PID控制对液压控制系统的改进 [J]. 锻压技术, 2015, 40(11): 67-70.
Ni H Q, Wang S J, Wang S Q, et al. Improvement of hydraulic control system based on BP neural network PID control [J]. Forging & Stamping Technology, 2015, 40(11): 67-70.
[5]李涛, 樊文欣, 赵俊生, 等. 基于BP神经网络的强力旋压成形本构关系模型 [J]. 锻压技术, 2014, 39(2): 150-153.
Li T, Fan W X, Zhao J S, et al. Research on constitutive relation of tube power spinning forming based on BP neural network [J]. Forging & Stamping Technology, 2014, 39(2): 150-153.
[6]占亮, 李霞, 孙礼宾, 等. 基于正交试验的曲轴热锻工艺参数优化 [J]. 锻压技术, 2014, 39(7): 10-13.
|