网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
一种基于机器视觉的轮胎模具表面字符检测方法
英文标题:A character inspection method on tire mould surface based on machine vision
作者:陈裕潮1 蔡念1 刘根1 张福1 李沅时2 王晗2 陈新度2 
单位:广东工业大学 
关键词:轮胎模具 机器视觉 图像定位 字符检测 系统采集 
分类号:TG315.9
出版年,卷(期):页码:2016,41(12):127-130
摘要:

 为了实现轮胎模具表面字符自动化检测,提出一种基于机器视觉的轮胎模具表面字符检测系统。根据轮胎模具的特点,设计了基于机器视觉的自动化检测装置,并对其工作原理进行介绍;设计了相应的图像处理方法,主要包括图像预处理、图像定位及字符检测等步骤。最后通过实验验证了该检测系统的可行性和准确性,并对产生误报的原因进行分析。实验结果表明,该检测系统可在短时间内完成轮胎模具表面字符检测,并具有高准确率和高检测速度。

 

 To implement the automatic inspection for characters on the tire mould surface, a character inspection system for tire mould was proposed based on machine vision. According to the features of the tire mould, the automatic inspection equipment was designed based on machine vision, and its working principle was introduced. Then, the corresponding image processing methods were designed mainly including image preprocessing, image location and character inspection etc. Finally, the feasibility and validity were tested by experiments, and the causes of errors were analyzed. The experimental results indicate that the automatic inspection system can inspect the characters on the tire mould surface with advantages of time-saving, high precision and fast detection.

 
基金项目:
基金项目:国家自然科学基金资助项目(61001179,51305084);广东省科技计划项目(2015B010124001,2015B010102014,2015B010104006);广东省自然科学基金研究团队项目(2015A030312008)
作者简介:
作者简介:陈裕潮(1991-),男,硕士研究生 E-mail:361384829@qq.com 通讯作者:蔡念(1976-),男,博士,副研究员 E-mail:cainian@gdut.edu.cn
参考文献:

 
[1]冯民堂,白文波,李志刚. 我国轮胎模具行业现状和发展趋势
[J]. 模具工业,2010,36(6):1-5.


 

Feng M T, Bai W B, Li Z G. The status and trend of development of tire mould industry in China
[J]. Mould Industry, 2010, 36 (6): 1-5.

 

 


[2]唐利虎,林华钊,林士棣,等.一种用于轮胎模具侧板表面字样的识别检测装置
[P].中国:201510316249.8,2015-06-10

 

Tang L H, Lin H Z, Lin S D, et al. An automatic inspection device for characters on the tire mould side panel
[P]. China: 201510316249.8, 2015-06-10.

 


[3]Nian C, Jianfa L, Qian Y, et al. A new IC solder joint inspection method for an automatic optical inspection system based on an improved visual background extraction algorithm
[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(1): 161-172.

 


[4]杨延竹,盛佳伟. 一种基于双目视觉的轴类锻件几何尺寸测量方法
[J]. 锻压技术,2016,41(3):105-109.

 

Yang Y Z, Sheng J W. A geometric parameters measurement method based on binocular vision in shaft forging
[J]. Forging & Stamping Technology, 2016, 41 (3): 105-109.

 


[5]阎镭,梁冬泰,向桂山,等. 机器视觉在自动化生产线状态检测与故障诊断中的应用
[J]. 液压与气动,2006,(12):65-68

 

Yan L, Liang D T, Xiang G S, et al. The application of machine vision in state monitoring and fault diagnosis for automatic product line
[J]. Hydraulics & Pneumatics, 2006, (12): 65-68.

 


[6]Cao J H,Lu C H,Shi C Y. Product quality on-line inspecting for the pressed protuberant character on a metal tag
[J]. Image and Vision Computing, 2007, (25): 1255-1262.

 


[7]朱虹,王立军, 杨海.基于圆弧拟合的非圆二次曲线加工技术研究
[J]. 机械设计与制造, 2012,(12):227-229.

 

Zhu H, Wang L J, Yang H. A study of processing technology about non-circular conic curve based on circular fitting
[J]. Machinery Design & Manufacture, 2012, (12): 227-229.

 


[8]宋毅,崔平远,居鹤华. 一种图像匹配中SSD和NCC算法的改进
[J]. 计算机工程与应用,2006,(2):42-44.

 

Song Y, Cui P Y, Ju H H. A computational optimization method of the SSD and NCC algorithms of the stereo matching
[J]. Computer Engineering and Applications, 2006, (2): 42-44.

 


[9]王成,刘金刚. 一种改进的字符串匹配算法
[J]. 计算机工程,2006,(2):62-64.

 

Wang C, Liu J G. An improved string matching algorithm
[J]. Computer Engineering, 2006, (2): 62-64.

 


[10]Li Y H, Lopresti D, Nagg G, et al. Validation of image defect models for optical character recognition
[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(2): 99-108.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9