网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC18钛合金等高温压缩过程的组织性能
英文标题:Microstructure and properties of isothermal high-temperature compression process for titanium alloy TC18
作者:徐杰 肖铁忠 黄娟 
单位:重庆工商职业学院 四川工程职业技术学院 
关键词:TC18钛合金 等高温压缩 控制变量法 动态回复 动态再结晶 
分类号:TG306
出版年,卷(期):页码:2017,42(1):111-115
摘要:

为了研究TC18钛合金在等高温压缩过程中组织与性能的变化,以Gleeble-1500热模拟试验机进行等高温压缩试验,计算得到所有试样的单向压缩膨胀系数均大于0.9,验证了热压缩试验的有效性。通过控制变量法研究不同变形温度和应变速率对其力学性能以及微观组织的影响,结果表明:TC18钛合金等高温热压缩时,流变应力随着变形温度的升高而降低,随着应变速率的增大而增大;而随着温度和应变速率的增加,组织中的初生等轴α相和次生针状α相逐渐发生相变而消失,β相逐渐长大形成粗大的β晶粒组织,并伴随有动态回复和动态再结晶两种软化机制。

In order to study the changes of the microstructure and properties for titanium alloy TC18 in the isothermal high-temperature compression process, the isothermal high-temperature compression experiment was carried out by Gleeble-1500 thermal simulation testing machine, and the axial compressive expansion coefficients of all specimens were calculated to be greater than 0.9. Therefore, the validity of the thermal compression test was verified. Then, the influences of different deformation temperatures and strain rates on mechanical properties and microstructure changes were researched by variable-control method. The results show that the flow stress of titanium alloy TC18 decreases with increasing of deformation temperature, and increases with increasing of strain rate in the isothermal high-temperature compression process. However, with increasing of temperature and strain rate, the primary equiaxed α-phase and secondary acicular α-phase gradually disappear due to phase change, while the β phase gradually grows and forms coarse grains with two kinds of softening mechanisms of dynamic recovery and dynamic recrystallization.

基金项目:
四川省教育厅科研项目(16ZB0495)
作者简介:
徐杰(1981-),男,硕士,副教授 E-mail:593712861@qq.com
参考文献:
[1]张晓园, 马驰, 史小云, . 热变形参数对TC25合金β锻坯微观组织和拉伸性能的影响[J]. 锻压技术, 2015, 40(11): 117-121.

Zhang X Y, Ma C, Shi X Y, et al. Influence of hot forming parameters on microstructure and tensile properties of alloy TC25 forging β [J]. Forging & Stamping Technology, 2015, 40(11):117-121.

[2]王鼎春. 高强钛合金的发展与应用[J]. 中国有色金属学报, 2010, 20(S1): 958-963.

Wang D C. Development and application of high-strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 958-963.

[3]Boyer R R, Briggs R D. The use of β titanium alloys in the aero-space industry[J]. Journal of Materials Engineering and Performance, 2005, 14(6):681-685.

[4]Ning Y Q, Xie B C, Liang H Q, et al. Dynamic softening behavior of TC18 titanium alloy during hot deformation[J]. Materials & Design, 2015,71: 68-77.

[5]李礼, 张晓泳, 李超, . TC18钛合金盘件等温模锻过程有限元模拟及试验[J].中国有色金属学报, 2013, 23(12): 3323-3334.

Li L, Zhang X Y, Li C, et al. Finite element simulation and experiment of isothermal die forging process of TC18 Ti alloy disc[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(12): 3323-3334.

[6]刘继雄, 马宏刚, 李巍, . 两相区变形温度对TC18钛合金组织转变规律影响[J]. 热加工工艺, 2015, 44(9): 59-61, 65.

Liu J X, Ma H G, Li W, et al. Effect of deformation temperature of two-phase region on changing law of microstructure of TC18 titanium alloy[J]. Hot Working Technology, 2015, 44(9): 59-61, 65.

[7]Zheng Q G, Ying T, Jie Z. Dynamic softening behaviour of AZ80 magnesium alloy during upsetting at different temperatures and strain rates[J]. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture,2010, 224(11): 1707-1716.

[8]梁后权, 郭鸿镇, 宁永权, . 基于软化机制的TC18钛合金本构关系研究[J]. 金属学报, 2014,50(7): 871-878.

Liang H Q, Guo H Z, Ning Y Q, et al. Analysis on the constitutive relationship of TC18 titanium alloy based on the softening mechanism[J]. Acta Metallurgica Sinica, 2014,50(7): 871-878.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9