网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
等温锻造变形程度对BT25y钛合金组织和性能的影响
英文标题:Influence of isothermal forging deformation degree on microstructure and mechanical property of titanium alloy BT25y
作者:袁士翀 杨雪梅 郭鸿镇 
单位:中国第二重型机械集团 德阳万航模锻有限责任公司 西北工业大学 
关键词:BT25y钛合金 等温锻造 变形程度 断裂 显微组织 力学性能 
分类号:TG319
出版年,卷(期):页码:2017,42(1):131-137
摘要:

为了确定BT25y钛合金的最佳等温锻造工艺参数,研究了20%,40%和60%这3种变形程度对其组织和性能的影响。结果表明:随着变形程度的提高,原始的β大晶粒逐渐被压扁,β晶界发生一定程度的破碎,晶内片状α相宽度加大,组织变得更加均匀;同时,合金强度呈先减小后增大的趋势,伸长率和断面收缩率变化规律相同,都呈递增趋势,断裂韧性基本上也是随变形量的增加而提高,室温拉伸断裂方式由穿晶解理断裂转变为准解理断裂,在较大变形量时又演变成韧性断裂。实验结果表明在本实验条件下,等温锻造变形量为60%时可以获得较好的组织性能匹配。

In order to confirm the optimum isothermal forging parameters for BT25y titanium alloy, the influences of deformation degree such as 20%,40%,60% on the microstructure and mechanical properties were studied. Results show that with the increase of deformation degree, the original big β grain is gradually squashed, the β grain boundary is broken at a certain degree, the width of intracrystalline lamellar α increases, and the whole microstructure becomes more uniform. At the same time, the tensile strength shows a trend of increase after a first decline, the elongation and reduction of area show a trend of rise, and the fracture toughness basically maintains the upward trend. The room-temperature tensile fracture mode is changed from transgranular cleavage fracture to quasi-cleavage fracture, and finally it is transformed into mainly ductile fracture when the large deformation occurs. Under the above experimental conditions, the corresponding microstructures and properties of forgings can achieve a good match at the deformation degree of 60%.

基金项目:
国家自然科学基金资助项目(51205319)
作者简介:
袁士翀(1982-),男,硕士,工程师 E-mail:yuanshichong@126.com 通讯作者:杨雪梅(1989-),女,博士研究生 E-mail:yangxuemei@mail.nwpu.edu.cn
参考文献:
[1]魏寿庸, 王青江, 何瑜, . 航空发动机用BT25BT25y热强钛合金评述[J]. 钛工业进展, 2013, 30(4): 9-14.

Wei S Y, Wang Q J, He Y, et al. Review of BT25 and BT25y titanium alloys for aero-engine[J]. Titanium Industry Progress, 2013, 30(4): 9-14.

[2]蔡钢, 雷旻, 万明攀, . 加热速度对BT25钛合金α→β相变的影响[J]. 稀有金属, 2016, 40(1): 8-13.

Cai G, Lei M, Wan M P, et al. α→β phase transformation in BT25 titanium alloy affected by heating rate[J]. Chinese Journal of Rare Metals, 2016, 40(1): 8-13.

[3]宁兴龙. 俄罗斯航空用钛合金[J]. 钛工业进展, 1999, 16(4): 19-25.

Ning X L. Russian aviation titanium alloy[J]. Titanium Industry Progress, 1999, 16(4):19-25.

[4]韩如旭. BT25y钛合金精锻棒材组织与性能的研究[J]. 钛工业进展, 2012, 29(2): 32-34.

Han R X. Study on relation of structure and performance of BT25y titanium alloy finish forged bar[J]. Titanium Industry Progress, 2012, 29(2): 32-34.

[5]郭鸿镇. 合金钢与有色合金锻造[M]. 西安: 西北工业大学出版社, 2009.

Guo H Z. Forging of Alloy Steel and Nonferrous Metals[M]. Xian: Northwestern Polytechnical University Press, 2009.

[6]彭小娜, 郭鸿镇, 石志峰, . 近等温变形量对TC4-DT钛合金组织参数和拉伸性能的影响[J]. 航空材料学报, 2013, 33(3): 18-24.

Peng X N, Guo H Z, Shi Z F, et al. Effects of near-isothermal deformation amounts on microstructure parameters and tensile properties of TC4-DT titanium alloy[J]. Journal of Aeronautical Materials, 2013, 33(3): 18-24.

[7]杨觉先. 金属塑性变形物理基础[M]. 北京: 冶金工业出版社, 1988.

Yang J X. The Physical Basis of Metal Plastic Deformation[M]. Beijing: Metallurgical Industry Press, 1988.

[8]Wang T, Guo H Z, Wang Y W, et al. The effect of microstructure on tensile properties, deformation mechanisms and fracture models of TG6 high temperature titanium alloy[J]. Materials Science and Engineering A, 2011, 528(6): 2370-2379.

[9]刘智恩. 材料科学基础[M]. 西安: 西北工业大学出版社, 2010.

Liu Z E. Foundation of Material Science[M]. Xian: Northwestern Polytechnical University Press, 2010.

[10]屈雅倩. BT25y钛合金等温锻造及热处理工艺研究[D]. 西安: 西北工业大学, 2015.

Qu Y Q. Study of Isothermal Forging and Heat Treatment Process of BT25y Titanium Alloy[D]. Xian: Northwestern Polytechnical University, 2015.

[11]路纲, 张翥, 惠松骁, . BT25y高温高强钛合金研究[J]. 金属学报, 2002, 38(Z): 206-209.

Lu G, Zhang Z, Hui S X, et al. Study on BT25y high temperature and high strength titanium alloy[J]. Acta Metallurgica Sinica,2002,38(Z): 206-209.

[12]王涛, 郭鸿镇, 赵严, . 等温变形量对600 TG6高温钛合金组织性能的影响[J]. 稀有金属材料与工程, 2010, 39(9): 1540-1544.

Wang T, Guo H Z, Zhao Y, et al. Effect of isothermaI deformation amount on microstructure and properties of 600 high temperature titanium alloy TG6[J]. Rare Metal Materials and Engineering, 2010, 39(9): 1540-1544.

[13]王涛, 郭鸿镇, 赵张龙, . TG6合金等温变形条件下组织演变与性能的研究[J]. 稀有金属材料与工程, 2010, 39(10): 1849-1852.

Wang T, Guo H Z, Zhao Z L, et al. Microstructure evolution and properties of TG6 alloy under the isothermal deformation condition[J]. Rare Metal Materials and Engineering, 2010, 39(10): 1849-1852.

[14]王涛, 郭鸿镇, 张永强, . 热锻温度对TG6高温钛合金显微组织和力学性能的影响[J]. 金属学报, 2010, 46(8): 913-920.

Wang T, Guo H Z, Zhang Y Q, et al. Effects of hot forging temperature on microstructure and mechanical property of TG6 high temperature titanium alloy[J]. Acta Metallurgica Sinica, 2010, 46(8): 913-920.

[15]彭小娜. 损伤容限型TC4-DT合金锻件组织性能控制研究[D]. 西安: 西北工业大学, 2014.

Peng X N. Study on the Control of Microstructure and Mechanical Properties of Damage Tolerance Titanium Alloy TC4-DT Forging[D]. Xian: Northwestern Polytechnical University, 2014.

[16]Lutjering G, Williams J C. Titanium[M]. New York: Berlin Heidelberg, 2007.

[17]Peng X N, Guo H Z, Shi Z F, et al. Microstructure characterization and mechanical properties of TC4-DT titanium alloy after thermomechanical treatment[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(3): 682-689.

[18]党薇, 薛祥义, 李金山, . TC21合金片层组织特征对其断裂韧性的影响[J]. 中国有色金属学报, 2010, 20(S1): 16-20.

Dang W, Xue X Y, Li J S, et al. Influence of lamellar microstructure feature on fracture toughness of TC21 alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 16-20.

[19]Richards N L. Quantitative evaluation of fracture toughness-microstructural relationships in alpha-beta titanium alloy[J]. Journal of Materials Engineering and Performance, 2004,13(2): 218-225.

[20]Richards N L, Barnby J T. The relationship between fracture toughness and microstructure in alpha-beta titanium alloys[J]. Materials Science and Engineering, 1976, 26(2): 221-229.

[21]Ankem S, Margolin H, Greene C A, et al. Mechanical properties of alloys consisting of two ductile phases[J]. Progress in Materials Science, 2006, 51(5): 632-709.

[22]钟群鹏, 赵子华. 断口学[M]. 北京: 高等教育出版社, 2006.

Zhong Q P, Zhao Z H. Fractography[M]. Beijing: Higher Education Press, 2006.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9