[1]崔耀东. 计算机排样技术及其应用[M]. 北京: 机械工业出版社, 2004.
Cui Y D. Computer Nesting Technology and Its Application [M]. Beijing: China Machine Press, 2004.
[2]汤金春,王培珍. 基于遗传算法的钢锭配切优化 [J]. 安徽工业大学学报:自然科学版, 2012, 29(1):67-69.
Tang J C, Wang P Z. Optimization of steel ingot cutting and matching based on genetic algorithm [J]. Journal of Anhui University of Technology: Natural Science Edition, 2012, 29(1):67-69.
[3]Furini F, Malaguti E, Duran R M, et al. A column generation heuristic for the two-dimensional two-staged guillotine cutting stock problem with multiple stock size [J]. European Journal of Operational Research, 2010, 218(1): 251-260.
[4]Vanderbeck F. Computational study of a column generation algorithm for bin packing and cutting stock problems [J]. Mathematical Programming, 1999, 86 (3): 565-594.
[5]Cui Y, Liu Z. C-sets-based sequential heuristic procedure for the one-dimensional cutting stock problem with pattern reduction [J]. Optimization Methods & Software , 2011,26 (1): 155-167.
[6]黄少丽, 杨剑, 候桂玉, 等. 解决二维下料问题的顺序启发式算法[J]. 计算机工程与应用, 2011, 47 (13): 234-237.
Huang S L, Yang J, Hou G Y, et al. Sequential heuristic algorithm for two-dimensional cutting stock problem[J]. Computer Engineering and Applications,2011,47(13):234-237.
[7]Belov G, Scheithauer G. Setup and open-stacks minimization in one-dimensional stock cutting [J]. Informs Journal on Computing, 2007, 19 (1): 27-35.
[8]Mukhacheva E A, Belov G N, Kartack V M, et al. Linear one-dimensional cutting-packing problems: Numerical experiments with the sequential value correction method (SVC) and a modified branch-and-bound method (MBB) [J]. Pesquisa Operacional, 2000, 20(2):153-168. [9]Andonov R, Poirrez V, Rajopadhye S. Unbounded knapsack problem: Dynamic programming revisited [J]. European Journal of Operational Research, 2000, 123(2): 394-407. [10]Cui Y. Dynamic programming algorithms for the optimal cutting of equal rectangles [J]. Applied Mathematical Modelling, 2005, 29(11):1040-1053. [11]Cui Y, Gu T L. A computational improvement to the dynamic programming algorithm for the optimal cutting of equal rectangles [J]. International Journal of Information and Management Sciences, 2009, 20: 453-458. [12]Cui Y P, Tang T B. Parallelized sequential value correction procedure for the one-dimensional cutting stock problem with multiple stock lengths [J]. Engineering Optimization, 2014, 46(10):1352-1368. [13]刘林, 刘心报, 包海飞, 等. 多型材变截面一维下料问题研究[J]. 仪器仪表学报, 2009, 30(6):446-450. Liu L, Liu X B, Bao H F, et al. A study on the one-dimensional cutting stock problem with stocks of many models and variable-section based on heuristic [J]. Journal of Instrument and Meter, 2009, 30(6):446-450.
|