网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
轿车加强梁内高压成形规律的仿真研究
英文标题:Simulation study on the hydroforming regulation of reinforcing beam of car
作者:贾宇坤 罗建斌 李健 何延之 
单位:广西科技大学 柳州福臻车体实业有限公司 
关键词:内高压成形 轿车加强梁 低温退火处理 AUTOFORM 最大减薄率 
分类号:TG394
出版年,卷(期):页码:2017,42(2):183-188
摘要:
针对轿车前副车架加强梁内高压成形技术,为了研究其成形规律,借助非线性有限元软件AUTOFORM,采用多道次工序开展轿车加强梁内高压成形数值模拟研究。确定了合理加载路径及主要参数设置,通过仿真计算其壁厚最大减薄率为19.84%,基于此分析了低温退火处理、模具与管材接触面的摩擦系数对加强梁内高压成形厚度分布以及结构件最大减薄率的影响规律。结果表明,低温退火处理方法较未经退火方法其最大减薄率会有显著降低,并使其壁厚分布更加均匀;同时,摩擦系数越小,壁厚减薄率越小,且对于横截面处壁厚分布越接近于初始壁厚。
In order to study the hydroforming regulation of front subframe reinforcing beam of car, the numerical simulation analysis of multi-pass process was conducted for the entire process of tube hydroforming by the nonlinear finite element software AUTOFORM. Then, a reasonable loading path and the main parameters were confirmed respectively, and the calculated maximum wall thinning rate was 19.84%. Based on the above, the influences of low-temperature annealing and friction coefficient between pipe and die on thickness distribution and the maximum wall thinning  rate of reinforcing beam in hydroforming were analyzed. The results show that the maximum thinning rate of reinforcing beam in hydroforming by low-temperature annealing is smaller than that by non-annealing, and the thickness distribution is more uniform. Meanwhile, the smaller the friction coefficient is, the smaller the wall thinning rate is, and the wall thickness distribution is much closer to the initial wall thickness.
基金项目:
广西高等学校优秀中青年骨干教师培养工程(GXQG012013032);广西科技大学研究生教育创新计划项目(GKYC201619);柳州市科学研究与技术开发计划课题(2015C060301);广西汽车零部件与整车技术重点实验室开放课题(2015KFYB03)
作者简介:
贾宇坤(1989-),男,硕士研究生 李健(1980-),男,博士,教授
参考文献:


[1]苑世剑,韩聪,王小松.空心变截面构件内高压成形工艺与装备[J].机械工程学报,2012,48(18):21-27.Yuan S J, Han C, Wang X S. Hydroforming processes and equipments of hollow structures with various sections [J]. Journal of Mechanical Engineering, 2012,48(18):21-27.
[2]郑晖,赵曦雅.汽车轻量化及铝合金在现代汽车生产中的应用[J]. 锻压技术,2016,41(2):1-5.Zheng H,Zhao X Y. Lightweight automobile and application of aluminum alloys in modern automobile production [J]. Forging & Stamping Technology,2016,41(2):1-5.
[3]Huang T L, Song X W, Liu X Y. The multi-objective robust optimization of the loading path in the T-shape tube hydroforming based on dual response surface model[J]. International Journal of Advanced Manufacturing Technology,2016,82(9-12):1595-1605.
[4]朱明清,吉卫喜,张旭,等.钛T型管液压成形的工艺参数研究[J]. 锻压技术,2015,40(1):56-60.Zhu M Q,Ji W X,Zhang X,et al. Research on technological parameters of hydroforming for titanium T-shaped tube [J]. Forging & Stamping Technology,2015,40(1):56-60.
[5]Bihamta R, Bui Q H, Guillot M, et al. Global optimization of the production of complex aluminium tubes by the hydroforming process[J]. CIRP Journal of Manufacturing Science and Technology, 2015, (9): 1-11.
[6]刘忠利,陶杰,王刘安,等.汽车底盘纵梁多工步成形数值模拟及试验[J].塑性工程学报,2015,22(5): 57-62.Liu Z L, Tao J, Wang L A, et al. The numerical simulation and experiment of the hydroforming for automobile chassis vertical beam [J]. Journal of Plasticity Engineering, 2015,22(5): 57-62.
[7]Wada M, Mizumura M, Iguchi K, et al. Large-expansion hydroforming technology achieving three-times expanding[A]. 11th International Conference on Technology of Plasticity[C]. Nagoya, Japan, 2014.
[8]荣吉利, 冯志伟, 项大林, 等. 汽车后桥缩径-胀形工艺的仿真分析[J]. 北京理工大学学报, 2014, 34(3): 231-236.Rong J L, Feng Z W, Xiang D L, et al. Numerical simulation research on the necking and the hydraulic bulging process of automobile rear axle[J]. Transactions of Beijing Institute of Technology, 2014, 34(3): 231-236.
[9]何玉林,吴春蕾,杨连发.管材脉动液压成形时接触压强与液体压强关系的研究[J].锻压技术,2015,40(10):29-33.He Y L,Wu C L,Yang L F.Research on the relationship of contact pressure and hydraulic pressure in the tube pulsating hydroforming[J]. Forging & Stamping Technology.2015,40(10):29-33.
[10]Yuan S J, Tang Z J, Liu G. Prediction and analysis of wrinkling in tube hydroforming process [J]. International Journal of Materials and Product Technology, 2011,40(3-4): 296-310.
[11]滕步刚,刘钢,苑世剑,等.汽车发动机排气歧管的内高压成形技术[J].塑性工程学报,2007, 14(3): 88-92.Teng B G, Liu G, Yuan S J, et al. Internal high pressure forming technology used for manufacturing exhaust pipes of automotive engine[J]. Journal of Plasticity Engineering,2007, 14(3): 88-92.
[12]Yang L F, Hu G L, Liu J W. Investigation of forming limit diagram for tube hydroforming considering effect of changing strain path[J]. International Journal of Advanced Manufacturing Technology, 2015, 79(5-8):793-803.
[13]袁杰,李健,窦凤楼,等. 管件缩径工艺仿真分析[J]锻压技术,2016,40(6):50-54.Yuan J, Li J, Dou F L, et al. Simulation analysis on necking process of tube[J]. Forging & Stamping Technology, 2016, 40 (6): 50-54.
[14]尹仁锟,王庆娟,高颀,等.热处理对新型β钛合金组织与性能的影响[J].稀有金属,2016,40(5):415-420.Yin R K,Wang Q J, Gao Q, et al. Microstructure and mechanical properties of new beta titanium alloy with heat treatment[J]. Chinese Journal of Rare Metals, 2016,40(5):415-420.
[15]颜孟奇,张业勤,李凯,等. Ti-55531钛合金自由锻件亮带形成原因分析[J].稀有金属,2016,40(6):534-539. Yan M Q, Zhang Y Q, Li K, et al. Analysis of bright band formation in Ti-55531 titanium alloy forging[J]. Chinese Journal of Rare Metals, 2016,40(6):534-539.
[16]Yannis P,Kyriakides K S. Hydroforming of anisotropic aluminum tubes [J]. International Journal of Mechanical Sciences, 2011, 53(2): 83-90.
[17]Fiorentino A, Ceretti E, Giardini C. Tube hydroforming compression test for friction estimation-numerical inverse method, application, and analysis [J]. International Journal of Advanced Manufacturing Technology, 2013, 64(5): 695-705. 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9