网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Kriging模型的超高强度钢板热冲压工艺参数优化
英文标题:Optimization on hot stamping process parameters of ultra high
作者:        
单位:西京学院 西安石油大学 中南大学 
关键词:热冲压 超高强度钢板 Kriging模型 回弹量 减薄率 
分类号:TG302
出版年,卷(期):页码:2017,42(3):57-63
摘要:

为了改善超高强度钢板冲压件的加工质量,以某方形槽热冲压件为对象,以板料淬火温度、模具初始温度、冲压速度和模具间隙为设计变量,以冲压件成形温降、回弹量和成形减薄率3个质量指标为响应量,构建了热冲压加工质量指标的Kriging模型。在此基础上,以构建的Kriging模型为目标函数,建立超高强度钢板热冲压工艺参数多目标优化模型。应用第二代非支配遗传算法进行寻优计算,获得了优化的热冲压工艺参数:B1500HS超高强度钢板零件热冲压的最佳淬火温度为898.3 ℃,模具的初始温度为67.1 ℃,冲压速度为39.64 mm·s-1,模具间隙为2.2 mm。工艺参数优化后的验算结果表明,工艺参数优化后,成形温度更加均匀,回弹量减少25.6%,最大减薄率下降23%。

To improve the processing quality of hot stamping for ultra high strength steel, taking a square slot as an example, the processing quality index Kriging model was constructed with the design variables of hardening temperature, die initial temperature, stamping velocity, die clearance and the responses values of temperature drop, springback value and thickness reduction ratio. On this basis, a multi-objective optimization model of process parameters was established with objective function of the constructed Kriging model. Then, the optimal process parameters of hot stamping were searched by non-dominated sorting genetic algorithm Ⅱ. The concrete optimal process parameters of B1500HS ultra high strength steel were obtained at quenching temperature of 898.3 ℃, die initial temperature of 67.1 ℃, stamping velocity of 39.64 mm·s-1 and die clearance of 2.2 mm. The checking results after optimization indicate that the forming temperature is more uniform, the springback amount declines by 25.6%, and the thinning ratio reduces by 23%.
 

基金项目:
国家自然科学基金资助项目(51405516);陕西省教育厅科研项目(16JK2242)
作者简介:
解 欢(1986-),女,硕士,讲师 曾 威(1987-),男,博士研究生
参考文献:


[1]胡军,陈珏,栗明,等. 基于ABAQUS高强度钢热冲压过程数值分析[J]. 热加工工艺, 2013,42(17): 79-82.Hu J,Chen J,Li M,et al. Numerical analysis on hot stamping process of high strength steel sheet based on ABAQUS[J]. Hot Working Technology, 2013,42(17): 79-82.
[2]吴斌,曹志福. 超高强钢板U形件热冲压回弹研究[J]. 热加工工艺, 2016,45(11): 140-143.Wu B, Cao Z F. Study on springback of hot stamping of ultra high strength steel plate U-shape part[J].Hot Working Technology, 2016,45(11): 140-143.
[3]Liu W, Liu H S, Xing Z W, et al. Effect of tool temperature and punch speed on hot stamping of ultra high strength steel[J]. Transactions of Nonferrous Metals Society of China, 2012,22(S2): 534-541.
[4]贺亚芳,吴会平,李细锋,等. 高强钢控制臂件冲压工艺优化及稳健性分析[J]. 材料科学与工艺, 2015,23(3): 39-43.He Y F, Wu H P, Li X F, et al. Stamping process optimization and robustness analysis for high strength steel control arm[J]. Material Science and Technology, 2015,23(3): 39-43.
[5]盈亮,贾治域,常颖,等. 高强度热冲压钢板强韧性工艺优化研究[J]. 材料科学与工艺, 2013,21(6): 72-77.Ying L, Jia Z Y, Chang Y, et al. Optimization of strength and toughness parameters in hot stamping process for ultra high strength steel[J]. Material Science and Technology, 2013,21(6): 72-77.
[6]孙新强,谢延敏,田银,等.基于小波神经网络和粒子群算法的铝合金板冲压回弹工艺参数优化[J]. 锻压技术,2015,40(1):137-142.Sun X Q, Xie Y M, Tian Y, et al. Parameters optimization of stamping and springback for aluminum-alloy sheet based on wavelet neural network and particle swarm optimization algorithm[J]. Forging & Stamping Technology, 2015,40(1):137-142.
[7]张毅,连昌伟.铝板在车身覆盖件冲压生产中的关键技术[J]. 锻压技术,2015,40(1):48-50.Zhang Y,Lian C W. Key technology of car body cover of aluminum sheet in the stamping process [J]. Forging & Stamping Technology,2015,40(1):48-50.
[8]Wei Z, Yue Y, Huan X, et al. CFKriging surrogate model based on the combination forecasting method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(18):3274-3284.
[9]陈龙. 汽车超高强度硼钢板热冲压成形工艺研究[D]. 合肥:合肥业大学, 2013.Chen L. Research on Hot Stamping Process of Automotive Ultrahighstrength Boron Steel[D]. Hefei: Hefei University of Technology, 2013.
[10]Yang Y, Zeng W, Qiu W S, et al. Optimization of the suspension parameters of a rail vehicle based on a virtual prototype Kriging surrogate model[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(8):1890-1898.
[11]冯翔,杨红雨. 进港飞机调度多目标优化问题的改进NSGA-II算法[J]. 电子科技大学学报, 2014,43(1): 66-70.Feng X, Yang H Y. Improved nondominated sorting genetic algorithm II for multiobjective optimization of scheduling arrival aircrafts [J].Journal of University of Electronic Science and Technology of China, 2014,43(1): 66-70.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9