网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铟镍合金特种条带冲压成形分析与模具设计
英文标题:Analysis on stamping of special strap and die design for indium nickel alloys
作者:何平 毛建中 宋建力 
单位:湖南大学 中核北方核燃料元件有限公司 
关键词:铟镍合金 冲压成形 定位格架特种条带 CAE 回弹 
分类号:TG386.2
出版年,卷(期):页码:2017,42(4):43-50
摘要:

铟镍合金用于核燃料组件中定位格架特种条带的制造。针对铟镍合金材料价格昂贵、厚度较薄以及特种条带本身窄长等特点,利用CAE软件模拟冲压成形过程,快速预测冲制过程中条带的回弹、破裂、起皱等变化,为条带冲制用模具的设计提供参考依据。首先研究材料冲压特性;然后分析条带特征,确定冲制工艺方案;最后进行条带冲压成形有限元仿真分析,根据仿真结果优化模具的结构设计。结果表明:厚度为0.2667 mm的铟镍合金料带的冲压适应性较好,仿真冲压件模型没有破裂和起皱的趋势,条带刚凸高度回弹量较大,经过回弹补偿后,最终成形高度接近公称尺寸。依据CAE分析结果优化设计出的模具调试情况良好,能够满足特种条带的冲制加工。

Indium nickel alloys are used in manufacturing special strap of nuclear fuel component orientation framework. According to the characteristics, such as the expensive price of indium nickel alloys, the thinner thickness and the long and narrow special strap, its stamping process was simulated by CAE software, and the rapid predictions on changes of springback, rupture and wrinkling were provided as references for the die design. Firstly, the material stamping features were researched, and then the characteristics of special strap were analyzed to determine the coining process. Finally, the strap stamping process was analyzed by finite element simulation, and the die structure was optimized according to the results of simulation. The results show that the indium nickel alloy strap with 0.2667 mm thickness is of better stamping adaptability without the trend of fracture and wrinkling. However, the springback amount of special strap rigid dimple height is large. After springback compensation, the forming height is close to the nominal dimension eventually. Thus, the die designed by the results of CAE analysis is debugged well, and it can satisfy the requirements of special strap coining processing.

基金项目:
国家科技重大专项子项(2013ZX06004009)
作者简介:
何平(1993-),男,硕士研究生 E-mail:hp4713@163.com 通讯作者:毛建中(1963-),男,博士,教授 E-mail:maojianzhong66@163.com
参考文献:

[1]陈伟, 张军, 李桂菊. 核电技术现状与研究进展[J]. 世界科技研究与发展, 2007, 29(5): 81-86.


Chen W, Zhang J,Li G J. The status research development of nuclear power technology[J]. World Sci-Tech R & D, 2007,295): 81-86.


[2]吴建军, 周维贤. 板料成形性基本理论[M]. 西安: 西北工业大学出版社, 2010.


Wu J J, Zhou W X. The Basic Theory of Sheet Metal Formability[M]. Xian: Northwestern Polytechnical University Press, 2010.


[3]赖林, 张奎, 李兴刚, . Zn含量对Mg-Mn-Zn 合金显微组织和力学性能的影响[J]. 稀有金属,2016, 40 (5): 552-558.


Lai L, Zhang K, Li X G, et al. Microstructure and mechanical properties of Mg-Mn-Zn magnesium alloy with different Zn contents [J]. Chinese Journal of Rare Metals2016, 40 (5): 552-558.


[4]GB/T 228.12010, 金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1-2010, Metallic materialsTensile testingPart 1:Method of test at room temperature[S].


[5]GB/T 15825.22008, 金属薄板成形性能与试验方法[S].


GB/T 15825.22008, Sheet metal formability and test methods[S].


[6]段来根. 多工位级进模冲压与自动化[M]. 北京: 机械工业出版社, 2001.


Duan L G. Multi-Station Progressive Die Stamping and Automation[M]. Beijing: China Machine Press, 2001.


[7]陈炎嗣. 冲压模具设计手册: 多工位级进模[M]. 北京:化学工业出版社, 2013.


Chen Y S. Stamping Die Design Handbook: Multi-Station Progressive Die[M]. Beijing: Chemical Industry Press, 2013.


[8]欧阳波仪. 多工位级进模标准教程[M]. 北京: 化学工业出版社, 2008.


Ouyang B Y. Multi-Station Progressive Die Standards Tutorial[M]. Beijing: Chemical Industry Press, 2008.


[9]翁其金, 徐新成. 冲压工艺及模具设计[M]. 北京: 机械工业出版社, 2004.


Weng Q J, Xu X C. Stamping Process and Die Design[M]. Beijing: China Machine Press, 2004.


[10]王孝培. 冲压手册[M]. 北京: 机械工业出版社, 2011.


Wang X P. Stamping Handbook[M]. Beijing: China Machine Press, 2011.


[11]孙德河, 王丽薇, 解文科.AZ31B镁合金薄板挤压成形模拟分析[J]. 锻压技术,2016, 41(1):61-66.


Sun D H, Wang L W, Xie W K. Simulation analysis on thin sheet of magnesium alloy AZ31B in the extrusion process [J]. Forging & Stamping Technology2016, 41(1):61-66.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9