网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于ANSYS Workbench 的八连杆压力机刚柔耦合模型动力学分析
英文标题:Rigid-flexible coupling dynamics analysis of eight-links mechanical press based on ANSYS Workbench
作者:于涛 张玉娇 王月亮 刘秀杰 张祥华 
单位:山东科技大学 
关键词:八连杆压力机 刚体运动学分析 刚柔耦合动力学分析 传动机构 ANSYS Workbench 
分类号:TH132
出版年,卷(期):页码:2017,42(4):143-148
摘要:

为考虑压力机柔性体部件对机械运动的影响,以八连杆压力机的传动机构为研究对象,使用Pro/E软件对八连杆传动机构进行参数化实体建模,分别应用ANSYS Workbench软件中的Rigid Dynamic模块及Transient Structural 模块,在对八连杆压力机的传动机构做刚体运动学仿真的基础上,进行该传动机构的刚柔耦合动力学分析,得到压力机传动机构的运动特性曲线和等效应力曲线及分布图。结果显示,主拉杆最大等效应力高于材料许用应力,将下轴孔尺寸优化为69 mm后,最大等效应力大大降低,符合主拉杆强度要求。这种方法实现了在同一软件平台中进行刚体运动学和刚柔耦合动力学仿真分析,通过两者比较可得出,刚柔耦合模型更能反映出机构的真实运动情况。

Considering the influence of the flexible body part of press on mechanical motion, for the transmission mechanism of the eight-links mechanical press, its parametric entity modeling was established by Pro/E software. Then, based on the rigid body kinematic simulation of the transmission mechanism of eight-links mechanical press, a rigid-flexible coupling dynamics analysis of the transmission mechanism was carried out by Rigid Dynamic module and Transient Structural module in ANSYS Workbench software, and the motion characteristic curves of the press transmission mechanism and the equivalent stress curve and distribution were obtained. The results show that the maximum equivalent stress of main link is higher than the material allowable stress, after optimization of the lower shaft hole size to 69 mm, the maximum equivalent stress is significantly reduced to fit for the main link strength requirements. Therefore, the rigid body kinematics and rigid-flexible coupling dynamics simulation analysis can be realized in the same software platform, and the rigid-flexible coupling model can better reflect the true movement of mechanism by comparing two models.

基金项目:
中国煤炭工业协会科技指导性计划项目(MTKJ 2012-344)
作者简介:
于涛(1972-),男,博士,副教授 E-mail:yutaosang@163.com 通讯作者:张玉娇(1991-),女,硕士研究生 E-mail:zyjjiang@126.com
参考文献:

[1]张进.多连杆机械式压力机动力学分析研究[D].合肥:合肥工业大学,2012.


Zhang J. Analysis of Dynamic for Multi-Link Mechanical Press [D].Hefei: Hefei University of Technology, 2012.


[2]李初晔,孙彩霞,郑会恩. 基于ANSYS的多连杆机构性能优化[J]. 锻压技术, 2011, 366):80-83.


Li C Y, Sun C X, Zheng H E. Performance optimization of multi linkage mechanism based on ANSYS [J]. Forging & Stamping Technology, 2011, 366):80-83.


[3]宋永强. 机械压力机多连杆机构优化设计及运动仿真研究[D].济南:山东大学, 2011.


Song Y Q. Study on Optimization Design and Motion Simulation for Multi-Linkage Mechanism in Mechanical Press [D].Jinan: Shandong University, 2011.


[4]于涛, 李亭亭.基于 ADAMS 的曲柄滑块压力机刚柔耦合模型的动态仿真分析[J].机械传动,201236(3):64-66.


Yu T, Li T T. Dynamic simulation for rigid-flexible coupling model of slider-crank press based on ADAMS [J]. Journal of Mechanical Transmission, 2012, 36(3): 64-66.


[5]关丽坤,刘丽秋. -停式定宽压力机刚柔耦合模型的动态仿真分析[J]. 锻压技术, 2016, 41(5): 87-92.


Guan L K, Liu L Q. Dynamic simulation on rigid-flexible coupling model of start-stop sizing press [J]. Forging & Stamping Technology, 2016, 41(5): 87-92.


[6]侯红玲,赵永强.基于ADAMS ANSYS的构件运动分析[J].机械设计与制造,2010,(5): 75-77.


Hou H L, Zhao Y Q. Kinematics analysis based on ADAMS & ANSYS [J].Machinery Design & Manufacture, 2010, (5) : 75-77.


[7]胡启国,叶丹,余超群,等.基于ADAMS的蜗轮蜗杆刚柔耦合动力学分析[J].机械工程师,2013, (8): 76-78.


Hu Q G, Ye D, Yu C Q, et al. Dynamics analysis on rigid-flexible coupling modle based on ADAMS[J]. Mechanical Engineer, 2013, (8): 76-78.


[8]李勉,赵玉成,顿文涛,等. 基于ANSYS Workbench的牛头刨床机构刚柔耦合动力学仿真分析[J].河南农业大学学报, 2014, 48(5):623-625,630.


Li M, Zhao Y C, Dun W T, et al. Rigid-flexible coupling dynamics simulation of driving mechanism of a shaper based on ANSYS Workbench [J]. Journal of Henan Agricultural University, 2014, 48(5): 623-625,630.


[9]汪荣荣. 八连杆压力机的动力学分析与参数化设计研究[D]. 青岛:山东科技大学,2014.


Wang R R. Dynamics Analysis and Parametric Design of Eight-Links Mechanical Press [D]. Qingdao: Shandong University of Science and Technology, 2014.


[10]于涛, 王月亮,范欣,等. 基于ANSYS Workbench的八连杆压力机动力学分析及优化设计[J]. 锻压技术, 2016, 41(8): 99-103.


Yu T, Wang Y L, Fan X, et al. Dynamics analysis and optimization design of eight-links mechanical press based on ANSYS Workbench [J]. Forging & Stamping Technology, 2016, 41(8): 99-103.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9