[1]Zaefferer S, Ohlert J, Bleck W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel [J].Acta Materilia, 2004, 52(9): 2765- 2778.
[2]Berrahmoune M R,Berveiller S,Inal K,et al. Analysis of the martensitic transformation at various scales in TRIP steel [J].Materials Science and Engineering A,2004,378(1-2): 304-307.
[3]景财年, 王作成, 韩福涛. 相变诱发塑性的影响因素研究进展[J].金属热处理,2005,30(2): 26-30.
Jing C N, Wang Z C, Han F T. Research of progress of the influencing factors on transformation induced plasticity [J]. Heat Treatment of Metals, 2005, 30(2): 26-30.
[4]郭玉琴,朱新峰,杨艳,等. 汽车轻量化材料及制造工艺研究现状[J]. 锻压技术,2015,40(3):1-6.
Guo Y Q, Zhu X F, Yang Y,et al. Research state of lightweight material and manufacture processes in automotive industry [J]. Forging & Stamping Technology, 2015,40(3):1-6.
[5]Kim J S, Lee Y H, Lee D L, et al. Microstructural influences on hydrogen delayed fracture of high strength steels [J]. Materials Science and Engineering: A, 2009, 505(1): 105-110.
[6]Kim S J, Jang S K, Kim J I. Electrochemical study of hydrogen embrittlement and optimum cathodic protection potential of welded high strength steel [J]. Metals and Materials International, 2005, 11(1): 63-69.
[7]Michler T, Balogh M P. Hydrogen environment embrittlement of an ODS RAF steel-role of irreversible hydrogen trap sites [J]. International Journal of Hydrogen Energy, 2010, 35(18): 9746-9754.
[8]Wang M, Akiyama E, Tsuzaki K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test [J]. Corrosion Science, 2007, 49(11): 4081-4097.
[9]吕学奇,陈业新. 氢陷阱对纯净钢SM490B中氢扩散行为的作用[J]. 上海金属, 2013, 35(5):14-18.
Lyu X Q, Chen Y X. Effects of hydrogen traps on diffusion of hydrogen in SM490B clean steel [J]. Shanghai Metals, 2013, 35(5):14-18.
[10]Nagumo M, Nakamura M, Takai K. Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels [J]. Metallurgical and Materials Transactions A, 2001, 32(2): 339-347.
[11]Ronevich J A, De Cooman B C, Speer J G, et al. Hydrogen effects in prestrained transformation induced plasticity steel[J]. Metallurgical and Materials Transactions A, 2012, 43(7): 2293-2301.
[12]Li X F, Wang Y F, Zhang P, et al. Effect of pre-strain on hydrogen embrittlement of high strength steels [J]. Materials Science and Engineering: A, 2014, 616: 116-122.
[13]Takagi S, Toji Y, Yoshino M, et al. Hydrogen embrittlement resistance of 1180 MPa grade automotive steel sheet evaluated by various methods [A]. OCAS. Steely Hydrogen 2014 Conference Proceedings [C]. Belgium: Lode Duprez, 2014.
[14]惠卫军,李阳,张永健,等. 预应变对中碳TRIP钢氢吸附及延迟断裂行为的影响[J]. 材料热处理学报, 2012, 33(6):42-46.
Hui W J, Li Y, Zhang Y J, et al. Effect of prestraining on hydrogen absorption and delayed fracture behavior of a medium-carbon TRIP steel [J]. Transactions of Materials and Heat Treatment, 2012, 33(6): 42-46.
[15]ISO 6892-1: 2016, Metallic materials—Tensile testing—Part 1:Method of test at room temperature[S].
[16]辛星. 超高强度钢的氢致滞后断裂[D].北京:北京科技大学,2009.
Xin X. The Hydrogen Induced Delayed Fracture of Ultra High Strength Steel [D]. Beijing: University of Science & Technology Beijing, 2009.
[17]蒋旺,巩建鸣,王艳飞, 等.电化学充氢前后304L奥氏体不锈钢的塑性对比[J].机械工程材料,2012,36(2):28-31.
Jiang W, Gong J M, Wang Y F, et al. Plasticity comparison of 304L austenitic stainless steel before and after electrochemical hydrogen charging[J]. Materials for Mechanical Engineering, 2012, 36(2):28-31.
[18]孙军.裂纹启裂韧度与韧窝尺寸的相关性[J].兵器材料科学与工程,1989,(3):36-43.
Sun J. Correlation between crack initiation toughness and dimple size [J]. Ordnance Material Science and Engineering,1989, (3):36-43.
|