网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
QP980和DP980高强钢板的抗延迟断裂性能
英文标题:Delayed fracture resistance performance for high strength steel sheet QP980 and DP980
作者:濮振谦 林建平 叶又  赵强 
单位:同济大学 泛亚汽车技术中心有限公司 
关键词:预应变 高强钢 延迟断裂 DP980 QP980 
分类号:TG142.1+2
出版年,卷(期):页码:2017,42(4):153-158
摘要:

高强钢零件的延迟断裂现象是汽车使用安全性的严重威胁。针对QP980和DP980两种高强度汽车用钢板,基于单向拉伸实验和电化学充氢,分析了预变形对高强钢充氢后的伸长率及强度的损失规律,对比了DP980和QP980的抗延迟断裂性能。研究发现,预应变从0至7%变化时,QP980和DP980均发生严重的塑性损失,但在同一预应变下,QP980的各项塑性损失几乎均大于DP980,得出QP980的抗延迟断裂性能较DP980差。通过断口形貌分析,发现QP980相比DP980更易受到氢的侵入从而脆化,从而验证了实验结果的准确性和科学性。

Delayed fracture phenomenon of high strength steel parts is a serious threat to the safety of automobile use. For high strength steel sheet DP980 and QP980 used in the vehicle, based on the uniaxial tension test and electrochemical hydrogen charging, the loss regularities of pre-deformation on elongation after high strength steel sheet hydrogen charging and strength change were studied, and the delayed fracture resistance performances for high strength steel sheet DP980 and QP980 were compared. The result shows that when the pre-strain changes from 0 to 7%, both materials of DP980 and QP980 have great ductility losses, but with the same  pre-strain, the ductility loss of QP980 is always greater than that of DP980. So, it is concluded that the delayed fracture resistance performance of QP980 is weaker than that of DP980. By the analysis of fracture surface morphology, it is found that QP980 is more permeable by hydrogen than DP980, and the experiment results are of accuracy and scientificity.

基金项目:
国家自然科学基金资助项目(51375346)
作者简介:
濮振谦(1991-),男,硕士研究生 E-mail:lofty_thill@163.com 通讯作者:林建平(1958-),男,教授,博士生导师 E-mail:jplin58@tongji.edu.cn
参考文献:

[1]Zaefferer S, Ohlert J, Bleck W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel [J].Acta Materilia, 2004, 52(9): 2765- 2778.


[2]Berrahmoune M RBerveiller SInal Ket al Analysis of the martensitic transformation at various scales in TRIP steel [J]Materials Science and Engineering A2004378(1-2): 304-307.


[3]景财年, 王作成, 韩福涛. 相变诱发塑性的影响因素研究进展[J].金属热处理,2005,30(2): 26-30.


Jing C N, Wang Z C, Han F T. Research of progress of the influencing factors on transformation induced plasticity [J]. Heat Treatment of Metals, 2005, 30(2): 26-30.


[4]郭玉琴,朱新峰,杨艳,. 汽车轻量化材料及制造工艺研究现状[J]. 锻压技术,2015,40(3):1-6.


Guo Y Q, Zhu X F, Yang Y,et al. Research state of lightweight material and manufacture processes in automotive industry [J]. Forging & Stamping Technology, 2015,40(3):1-6.


[5]Kim J S, Lee Y H, Lee D L, et al. Microstructural influences on hydrogen delayed fracture of high strength steels [J]. Materials Science and Engineering: A, 2009, 505(1): 105-110.


[6]Kim S J, Jang S K, Kim J I. Electrochemical study of hydrogen embrittlement and optimum cathodic protection potential of welded high strength steel [J]. Metals and Materials International, 2005, 11(1): 63-69.


[7]Michler T, Balogh M P. Hydrogen environment embrittlement of an ODS RAF steel-role of irreversible hydrogen trap sites [J]. International Journal of Hydrogen Energy, 2010, 35(18): 9746-9754.


[8]Wang M, Akiyama E, Tsuzaki K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test [J]. Corrosion Science, 2007, 49(11): 4081-4097.


[9]吕学奇,陈业新. 氢陷阱对纯净钢SM490B中氢扩散行为的作用[J]. 上海金属, 2013, 35(5):14-18.


Lyu X Q, Chen Y X. Effects of hydrogen traps on diffusion of hydrogen in SM490B clean steel [J]. Shanghai Metals, 2013, 35(5):14-18.


[10]Nagumo M, Nakamura M, Takai K. Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels [J]. Metallurgical and Materials Transactions A, 2001, 32(2): 339-347.


[11]Ronevich J A, De Cooman B C, Speer J G, et al. Hydrogen effects in prestrained transformation induced plasticity steel[J]. Metallurgical and Materials Transactions A, 2012, 43(7): 2293-2301.


[12]Li X F, Wang Y F, Zhang P, et al. Effect of pre-strain on hydrogen embrittlement of high strength steels [J]. Materials Science and Engineering: A, 2014, 616: 116-122.


[13]Takagi S, Toji Y, Yoshino M, et al. Hydrogen embrittlement resistance of 1180 MPa grade automotive steel sheet evaluated by various methods [A]. OCAS. Steely Hydrogen 2014 Conference Proceedings [C]. Belgium: Lode Duprez, 2014.


[14]惠卫军,李阳,张永健,. 预应变对中碳TRIP钢氢吸附及延迟断裂行为的影响[J]. 材料热处理学报, 2012, 336:42-46.


Hui W J, Li Y, Zhang Y J, et al. Effect of prestraining on hydrogen absorption and delayed fracture behavior of a medium-carbon TRIP steel [J]. Transactions of Materials and Heat Treatment, 2012, 336: 42-46.


[15]ISO 6892-1: 2016, Metallic materialsTensile testingPart 1:Method of test at room temperature[S].


[16]辛星. 超高强度钢的氢致滞后断裂[D].北京:北京科技大学,2009.


Xin X. The Hydrogen Induced Delayed Fracture of Ultra High Strength Steel [D]. Beijing: University of Science & Technology Beijing, 2009.


[17]蒋旺,巩建鸣,王艳飞, .电化学充氢前后304L奥氏体不锈钢的塑性对比[J].机械工程材料,2012,36(2):28-31.


Jiang W, Gong J M, Wang Y F, et al. Plasticity comparison of 304L austenitic stainless steel before and after electrochemical hydrogen charging[J]. Materials for Mechanical Engineering, 2012, 36(2):28-31.


[18]孙军.裂纹启裂韧度与韧窝尺寸的相关性[J].兵器材料科学与工程,1989,(3):36-43.


Sun J. Correlation between crack initiation toughness and dimple size [J]. Ordnance Material Science and Engineering,1989, (3):36-43.


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9