[1]黄长征,李小东,谭建平. 液压机速度控制技术新发展[J]. 锻压技术,2007, 32(5): 8-11.
Huang C Z, Li X D, Tan J P. Development trends on speed control of hydraulic press[J]. Forging & Stamping Technology, 2007, 32(5): 8-11.
[2]徐其川. 大型锻件(材)锻造变形制度的研究及应用[D]. 武汉:武汉轻工大学,2014.
Xu Q C. Study and Application on System of Forging Deformation for Large Forge Pieces[D]. Wuhan: Wuhan Polytechnic University, 2014.
[3]Chalupa P, Novak J. Modeling and model predictive control of a nonlinar hydraulic system [J]. Computers & Mathematics with Applications, 2013, 66(2): 155-164.
[4]于革刚,吴定安,吴进军,等. 大型模锻压机同步控制技术研究[J]. 锻压技术,2011, 36(3): 62-66.
Yu G G, Wu D A, Wu J J, et al. Research on synchronous control technology for larger forging press[J]. Forging & Stamping Technology, 2011, 36(3): 62-66.
[5]刘新良. 巨型模锻液压机主动同步控制系统研究[D]. 长沙:中南大学, 2010.
Liu X L. Gaint Die Forging Hydraulic Press Active Control System Research[D]. Changsha:Central South University, 2010.
[6]周恩涛, 廖生行, 牟丹. 电液比例阀控系统模糊-PID 控制的研究[J]. 机床与液压, 2003, 31(6): 225-227.
Zhou E T, Liao S H, Mou D. Fuzzy-PID control in electro-hydraulic proportional valve system[J]. Machine Tool and Hydraulics, 2003,31(6): 225-227.
[7]陈晓祺. 液压锻造机非线性控制策略研究[D]. 天津:天津大学, 2010.
Chen X Q. Research on Nonlinear Control Method of Hydraulic Forging Machine System[D]. Tianjin:Tianjin University, 2010.
[8]张猛. 极低速下大型模锻压机系统建模与动态特性分析[D]. 长沙: 中南大学, 2012.
Zhang M. System Modeling and Dynamic Performance Analysis for Huge Die-Forging Press under Extremely Low Speed[D]. Changsha: Central South University, 2012.
[9]李文坚,李毅波,潘晴. 基于LuGre模型的大型模锻装备低速摩擦补偿分析[J]. 锻压技术,2015,40(1): 71-75.
Li W J, Li Y B, Pan Q. Analysis on low-velocity friction compensation of large forging equipment based on LuGre-model[J]. Forging & Stamping Technology, 2015, 40(1): 71-75.
[10]邓坎. 复杂模锻全过程锻压变形力建模及其验证[D]. 长沙:中南大学,2014.
Deng K. Deformation Force Modeling for the Whole Complex Forging Process and Its Verification[D]. Changsha: Central South University, 2014.
[11]Chen S W, Wu M H, Zhao S. Analog circuit fault diagnosis based on DEOS-ELM[J]. Seventh International Symposium on Computational Intelligence & Design, 2014, 1: 509-513.
[12]Kumar V, Gaur P, Mittal A P. Trajectory control of DC servo using OS-ELM based controller[J]. Power India Conference, 2012, 5 :1-5.
[13]Huang G B, Bai Z, Kasun L L C, et al. Local receptive fields based extreme[J]. IEEE Computational Intelligence Magazine, 2015, 10(2): 18-29.
[14]Song Y, Liò P. A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine[J]. Journal of Biomedical Science and Engineering, 2010, 3(6): 556-567.
[15]Deng H, Lio H X. A novel neural approximate inverse control for unknown nonlinear discrete dynamical systems[J]. IEEE Transactions on Systems Man & Cybernetics, Part B: Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society, 2005, 35(1): 115-123.
[16]Kasun L L C, Zhou H, Huang G B, et al. Representational learning with extreme learning machine for big data [J]. IEEE Intelligent System, 2013, 28(6): 1-4.
[17]Spooner J T, Maggiore M, Ordonez R, et al. Stable Adaptive Control and Estimation for Nonlinear Systems[M]. New York: Wiley Inter Science, 2002.
[18]彭德奇,罗伟,张彦宇. 基于SVM模型的快速锻压机智能控制算法[J]. 计算机测量与控制, 2012, 20(1): 88-90.
Peng D Q, Luo W, Zhang Y Y. Intelligent control based on SVM prediction for fast forging hydraulic press[J]. Computer Measurement & Control, 2012, 20(1): 88-90.
|