网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于多岛遗传算法的圆环镦粗测试方法优化
英文标题:Optimization on ring compression test based on multi-island genetic algorithm
作者:殷强 胡成亮 赵震 
单位:上海交通大学 
关键词:圆环镦粗法 多岛遗传算法 离散程度 标定曲线 摩擦因子 
分类号:TG316
出版年,卷(期):页码:2017,42(5):108-112
摘要:
圆环镦粗法是塑性成形中常用的摩擦因子测试方法,圆环试样尺寸直接影响测试的灵敏度。以两种摩擦条件下内径变化量的差值作为目标,基于有限元模拟采用多岛遗传算法进行圆环试样尺寸的优化,优化结果比例为30∶13∶5,与经典尺寸比例(6∶3∶2)相比,内径变化量的差值提高了47.31%。在此基础上,将优化尺寸与经典尺寸比例作进一步对比,从等效应变场、金属流线分布、接触正压力以及标定曲线等结果,分析了优化尺寸比例的优势。根据优化的试样尺寸比例,开展了相关的实际测试工作,测出3种不同润滑剂的摩擦因子,证实优化方案的可用性。
The ring compression test is a common method to measure friction factor, and the geometric dimension of the ring  directly affected the sensitivity of the testing method. Taking the difference of the variation between inner diameters under two different frictional conditions as the goal, the geometric dimension of the ring was optimized based on multi-island genetic algorithm and FEM simulation, and the ratio of the optimized scheme was 30∶13∶5. However, compared with the traditional scheme (6∶3∶2), the difference of the inner diameter variation increased by 47.31%. Based on the improvement, a further comparison between the optimized scheme and the traditional scheme was conducted from the results of the equivalent strain fields, distributions of metal streamline, normal pressures and calibration curves, and the advantages of the optimized scheme were analyzed. Finally, according to the optimized geometric dimension, the practical experiment was also carried out with three friction factors measured under different lubricating conditions. The result shows that this testing method is feasible.
基金项目:
国家自然科学基金资助项目(51475294)
作者简介:
殷强(1991-),男,硕士研究生 胡成亮(1980-),男,博士,副研究员
参考文献:


[1]Kunogi M. On plastic deformation of hollow cylinders under axial compressive loading [J]. Journal of Science and Research Institute, 1954, 50, 215-246.
[2]Ohdar R K, Talukdar P, Equbal M I. Evaluation of friction coefficient of 38MnVS6 medium carbon micro-alloyed steel in hot forging process by using ring compression test [J]. Technology Letters, 2015,(2):12-16.
[3]Krause A, Weirauch R, Bruer G, et al. Analysis of the friction behavior of DLC in warm bulk forming by using the ring compression test [J]. Production Engineering, 2015,(9):41-49.
[4]Male A T, Cockcroft M G. A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation [J]. Journal of the Institute of Metals, 1964, 93:38-46.
[5]Male A T, Depierre V. The validity of mathematical solutions for determining friction from the ring compression test [J]. Journal of Lubrication Technology, 1970, 92:389-397.
[6]Pierre V D, Gurney F, Male A T. Mathematical Calibration of the Ring Test with Bulge Formation [R]. NoDIRA: National Technical Information Service, 1972.
[7]Rao K P, Sivaram K. A review of ring-compression testing and applicability of the calibration curves [J]. Journal of Materials Processing Technology, 1993, 37:295-318.
[8]李鹏, 胡成亮, 孟丽芬,等. 表面粗糙度对冷锻摩擦因子的影响[J]. 塑性工程学报, 2015, 22(5):24-28.Li P, Hu C L, Meng L F, et al. Effect of surface roughness on cold forging friction factor [J]. Journal of Plasticity Engineering, 2015, 22(5):24-28.
[9]沈文涛, 张鹏, 赵彤,等. 利用圆环镦粗法测定7050铝合金高温变形摩擦系数[J]. 大型铸锻件, 2016,(5):32-35.Shen W T, Zhang P, Zhao T, et al. Determination of high temperature deformation coefficient of 7050 aluminum alloy by ring upsetting method [J]. Heavy Casting and Forging, 2016,(5):32-35.
[10]林治平. 上限法在塑性加工工艺中的应用[M]. 北京:中国铁道出版社,1991.Lin Z P. Application of the Upper Bound Method in Plastic Processing Technology [M]. Beijing: China Railway Publishing House, 1991.
[11]汪大年. 金属塑性成形理论[M]. 北京:机械工业出版社,1985.Wang D N. Theory of Metal Plastic Forming [M]. Beijing: China Machine Press, 1985.
[12]Holland J H. Adaptation in Natural and Artificial System [M]. Cambridge, Massachusetts: MIT Press, 1975.
[13]Booker L B, Goldberg D E, Holland J H. Classifier systems & genetic algorithms [J]. Artificial Intelligence, 1989, 40:235-282.
[14]Chung J S, Hwang S M. Process optimal design in forging by genetic algorithm [J]. Journal of Manufacturing Science and Engineering, 2002, 124:397-408.
[15]Poursina M, António C A C, Castro C F, et al. Preform optimal design in metal forging using genetic algorithms [J]. Engineering Computations, 2004, 21(5-6):631-650.
[16]Alimirzaloo V, Sadeghi M, Biglari F. Optimization of the forging of aerofoil blade using the finite element method and fuzzy-Pareto based genetic algorithm [J]. Journal of Mechanical Science and Technology, 2012, 26(6), 1801-1810.
[17]丁泉惠,王森,黄修长,等. 基于有限元法和多岛遗传算法的飞轮结构参数优化设计[J]. 噪声与振动控制,2016,36(2): 56-60.Ding Q H, Wang S, Huang X C, et al. Optimization design of flywheel structural parameters based on finite element analysis and MIGA method [J]. Noise and Vibration Control, 2016, 36(2):56-60.
[18]Kay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code [J]. Technometrics, 1979, 21, 239-245.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9