[1]Martin G, Naze L, Cailletaud G. Numerical multiscale simulations of the mechanical behavior of β-metastable titanium alloys Ti5553 and Ti17[J]. Procedia Engineering, 2011, 10: 1803-1808.
[2]Gerhard W, Boyer R R, Collings E W. Materials Properties Handbook: Titanium Alloys[M]. Ohio:ASM, 1994.
[3]Salishchev G, Zerebtsov S V, Mironov S Y, et al. Formation of grain boundary misorientation spectrum in alpha-beta titanium alloys with lamellar structure under warm and hot working[J]. 2004, 467:501-506.
[4]徐斌,王晓英,周建华, 等. TC17 钛合金在热变形过程中的组织演变规律[J]. 中国有色金属学报, 2010, 20(1): 167-172.
Xu B, Wang X Y, Zhou J H, et al. Microstructure evolvement regularity of TC17 titanium alloy in hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 167-172.
[5]孙新,曾卫东,张志金,等. 热工艺参数对 TC17 合金静态球化动力学的影响[J]. 中国有色金属学报, 2015, 25(1):9-14.
Sun X, Zeng W D, Zhang Z J, et al. Effect of thermal processing parameters on static globularization kinetics of TC17 alloy[J].The Chinese Journal of Nonferrous Metals, 2015, 25(1):9-14.
[6]田飞, 曾卫东, 马雄,等. 基于定量金相学的TC17钛合金片层组织取向行为分析[J]. 稀有金属材料与工程, 2012, 41(6):998-1003.
Tian F, Zeng W D, Ma X, et al. Quantitative analysis of the orientation of lamellar α in TC17 titanium alloy[J]. Rare Metal Materials and Engineering, 2012, 41(6): 998-1003.
[7]Ma X, Zeng W, Sun Y, et al. Modeling constitutive relationship of Ti17 titanium alloy with lamellar starting microstructure[J]. Materials Science & Engineering A, 2012, 538(11):182-189.
[8]姚泽坤,郭鸿镇,杨陈,等. 形变、相变交互作用对Ti17合金等温锻件显微组织和力学性能影响规律研究[J]. 稀有金属材料与工程, 2003, 32(7): 538-541.
Yao Z K, Guo H Z, Yang C, et al. Effects of the interaction of deformation and phase change on microstructure and mechanical properties of Ti-17 Alloy[J]. Rare Metal Materials and Engineering, 2003, 32(7): 538-541.
[9]孟庆通,庞克昌,王晓英. 钛合金整体叶盘等温锻造技术[J]. 上海钢研, 2006, (2): 16-19.
Meng Q T, Pang K C, Wang X Y. The isothermal forging technology of titanium alloy blisk[J]. Journal of Shanghai Iron & Steel Research, 2006, (2): 16-19.
[10]吴瑞恒,庞克昌,徐祖耀, 等. 整体叶盘等温成形的计算机模拟与分析[J]. 宝钢技术,2005, (5): 47-50.
Wu R H, Pang K C, Xu Z Y, et al. Computer simulation and analysis of the isothermal formation of vaneintegrated disk[J]. Bao Steel Technology, 2005, (5): 47-50.
[11]Wang T, Guo H, Tan L, et al. Beta grain growth behaviour of TG6 and Ti17 titanium alloys[J]. Materials Science & Engineering A, 2011, 528(21):6375-6380.
[12]Russ S M. Effect of LCF on HCF crack growth of Ti-17[J]. International Journal of Fatigue, 2005, 27(10-12):1628-1636.
[13]Hiroaki Matsumoto, Masami Kitamura, Li Y P, et al. Hot forging characteristic of Ti-5Al-5V-5Mo-3Cr alloy with single metastable β microstructure[J]. Materials Science & Engineering A, 2014, 611:337-344.
[14]李波,张沛.TC4合金高温拉伸变形力学行为与微观组织演变关联研究[J].锻压技术,2015, 40(6):108-115.
Li B, Zhang P. Study on the correlation of flow behavior and microstructure evolution during the high temperature tensile deformation of TC4 alloy[J]. Forging & Stamping Technology, 2015, 40(6):108-115.
[15]姚彭彭, 李萍, 李成铭,等. TA15钛合金β热变形行为及显微组织[J]. 稀有金属, 2015, 39(11):967-974.
Yao P P, Li P, Li C M, et al. Hot deformation behavior and microstructure of TA15 titanium alloy in β field[J]. Chinese Journal of Rare Metals, 2015, 39(11):967-974.
[16]刘少轩,邓磊,王新云,等. TC4钛合金降温压缩变形行为[J]. 塑性工程学报,2016,24(6):162-166.
Liu S X, Deng L, Wang X Y, et al. Behavior of cooling compression for TC4 titanium alloy [J]. Journal of Plasticity Engineering. 2016,24 (6):162-166.
|