网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC17合金整体叶盘等温锻造过程数值模拟及工艺参数影响
英文标题:Influence of process parameters and numerical simulation on
作者:王波伟 唐军 曾卫东 张帅 秦卫东 
单位:中航工业陕西宏远航空锻造有限责任公司 西北工业大学 材料科学与工程学院 
关键词:TC17钛合金 整体叶盘 β相 等温锻造 有限元模拟 应变 
分类号:TG146.2
出版年,卷(期):页码:2017,42(6):7-11
摘要:

采用二维有限元模拟软件Deform-2D对TC17钛合金整体叶盘锻件的等温β模锻过程进行数值模拟,分析了整体叶盘不同部位的应变场。根据有限元模拟结果对TC17钛合金整体叶盘锻件的荒坯尺寸及工艺参数进行优化,并进行了TC17钛合金等温锻造成形工艺试验。试验结果表明,等温β模锻工艺可使TC17钛合金组织中粗大原始β相晶粒得到充分的形变,晶界析出弯曲、断续的细小α相,晶内析出交错、细小的次生α相,呈现理想的网篮组织;当应变达到0.75时,可使得整体叶盘锻件的强度、塑性及断裂韧性实现理想匹配。

The isothermal forging process of integral blisk for titanium alloy TC17 in β zone was numerically simulated by twodimensional (2D) finite element (FEM) software Deform2D, and the distributions of equivalent strain fields in different parts of integral blisk were studied. Then, the process parameters and the size of wasted billet were optimized based on the results of FEM simulation, and the experiments of isothermal forging process of titanium alloy TC17 were carried out. The experiment results show that the initial coarse β phase grains of titanium alloy TC17 are fully deformed, and the bending and intermittent small α phases are precipitated in grain boundary. However, the interlaced and slender ideal secondary α phases are precipitated in intracrystalline to exhibit the basketweave microstructure after the isothermal forging process. The strength, plasticity and fracture toughness of the integral blisk forging can be matched ideally when the strain reaches 0.75.

基金项目:
陕西省科技创新项目(20146102120054)
作者简介:
王波伟(1983-),男,硕士,工程师
参考文献:


[1]Martin G, Naze L, Cailletaud G. Numerical multiscale simulations of the mechanical behavior of β-metastable titanium alloys Ti5553 and Ti17[J]. Procedia Engineering, 2011, 10: 1803-1808.



[2]Gerhard W, Boyer R R, Collings E W. Materials Properties Handbook: Titanium Alloys[M]. Ohio:ASM, 1994.



[3]Salishchev G, Zerebtsov S V, Mironov S Y, et al. Formation of grain boundary misorientation spectrum in alpha-beta titanium alloys with lamellar structure under warm and hot working[J]. 2004, 467:501-506.


[4]徐斌,王晓英,周建华, 等. TC17 钛合金在热变形过程中的组织演变规律[J]. 中国有色金属学报, 2010, 20(1): 167-172.


Xu B, Wang X Y, Zhou J H, et al. Microstructure evolvement regularity of TC17 titanium alloy in hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 167-172.



[5]孙新,曾卫东,张志金,等. 热工艺参数对 TC17 合金静态球化动力学的影响[J]. 中国有色金属学报, 2015, 25(1):9-14.


Sun X, Zeng W D, Zhang Z J, et al. Effect of thermal processing parameters on static globularization kinetics of TC17 alloy[J].The Chinese Journal of Nonferrous Metals, 2015, 25(1):9-14.



[6]田飞, 曾卫东, 马雄,等. 基于定量金相学的TC17钛合金片层组织取向行为分析[J]. 稀有金属材料与工程, 2012, 41(6):998-1003.


Tian F, Zeng W D, Ma X, et al. Quantitative analysis of the orientation of lamellar α in TC17 titanium alloy[J]. Rare Metal Materials and Engineering, 2012, 41(6): 998-1003.



[7]Ma X, Zeng W, Sun Y, et al. Modeling constitutive relationship of Ti17 titanium alloy with lamellar starting microstructure[J]. Materials Science & Engineering A, 2012, 538(11):182-189.



[8]姚泽坤,郭鸿镇,杨陈,等. 形变、相变交互作用对Ti17合金等温锻件显微组织和力学性能影响规律研究[J]. 稀有金属材料与工程, 2003, 32(7): 538-541.


Yao Z K, Guo H Z, Yang C, et al. Effects of the interaction of deformation and phase change on microstructure and mechanical properties of Ti-17 Alloy[J]. Rare Metal Materials and Engineering, 2003, 32(7): 538-541.



[9]孟庆通,庞克昌,王晓英. 钛合金整体叶盘等温锻造技术[J]. 上海钢研, 2006, (2): 16-19.


Meng Q T, Pang K C, Wang X Y. The isothermal forging technology of titanium alloy blisk[J]. Journal of Shanghai Iron & Steel Research, 2006, (2): 16-19.



[10]吴瑞恒,庞克昌,徐祖耀, 等. 整体叶盘等温成形的计算机模拟与分析[J]. 宝钢技术,2005, (5): 47-50.


Wu R H, Pang K C, Xu Z Y, et al. Computer simulation and analysis of the isothermal formation of vaneintegrated disk[J]. Bao Steel Technology, 2005, (5): 47-50.



[11]Wang T, Guo H, Tan L, et al. Beta grain growth behaviour of TG6 and Ti17 titanium alloys[J]. Materials Science & Engineering A, 2011, 528(21):6375-6380.



[12]Russ S M. Effect of LCF on HCF crack growth of Ti-17[J]. International Journal of Fatigue, 2005, 27(10-12):1628-1636.



[13]Hiroaki Matsumoto, Masami Kitamura, Li Y P, et al. Hot forging characteristic of Ti-5Al-5V-5Mo-3Cr alloy with single metastable β microstructure[J]. Materials Science & Engineering A, 2014, 611:337-344.



[14]李波,张沛.TC4合金高温拉伸变形力学行为与微观组织演变关联研究[J].锻压技术,2015, 40(6):108-115.


Li B, Zhang P. Study on the correlation of flow behavior and microstructure evolution during the high temperature tensile deformation of TC4 alloy[J]. Forging & Stamping Technology, 2015, 40(6):108-115.



[15]姚彭彭, 李萍, 李成铭,等. TA15钛合金β热变形行为及显微组织[J]. 稀有金属, 2015, 39(11):967-974.


Yao P P, Li P, Li C M, et al. Hot deformation behavior and microstructure of TA15 titanium alloy in β field[J]. Chinese Journal of Rare Metals, 2015, 39(11):967-974.



[16]刘少轩,邓磊,王新云,等. TC4钛合金降温压缩变形行为[J]. 塑性工程学报,2016,24(6):162-166.


Liu S X, Deng L, Wang X Y, et al. Behavior of cooling compression for TC4 titanium alloy [J]. Journal of Plasticity Engineering. 2016,24 (6):162-166.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9