网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于T型布局方式的异构矩形件下料算法
英文标题:A cutting stock algorithm of heterogeneous rectangular pieces based on Tshaped layout
作者:胡钢 张春利 潘立武 
单位:四川信息职业技术学院 河北金融学院 河南牧业经济学院 
关键词:下料问题 T型布局方式 列生成算法 约束布局算法 异构矩形件 
分类号:TP391
出版年,卷(期):页码:2017,42(6):180-185
摘要:

讨论异构矩形件下料问题,提出一种基于T型布局方式的优化下料算法。首先构造一种约束布局算法,生成矩形件在单张板材上的T型布局方式,然后采用列生成算法,依据当前矩形件剩余需求量,迭代调用上述约束布局算法,生成一个虚拟下料方案,按照不产生多余矩形件原则,选取虚拟下料方案中的部分布局方式加入到实际下料方案中,更新当前矩形件剩余需求量,重复上述步骤,直到矩形件剩余需求量为零。采用文献中基准例题将本文算法与3种文献中算法进行比较,数值实验结果表明,本文算法比3种文献中算法分别节省3.93%,1.27%和1.17%的板材。
 

The cutting stock problem of heterogeneous rectangular pieces was discussed, and an optimization cutting algorithm based on Tshaped layout was proposed. Firstly, a constrained layout algorithm was constructed to generate the Tshaped layout of rectangular pieces on the single sheet. Then, the column generation algorithm was used to generate a virtual cutting plan according to the current remaining demand of rectangular pieces, partial layouts was admitted into actual cutting plan according to the rule that no redundant rectangular pieces was generated, and the current remaining demand of rectangular pieces was updated. The above steps were repeated until the remaining demand of rectangular pieces was zero. Comparing the proposed algorithm with three algorithms in the literature through benchmark instances, the results of numerical experiments show that the proposed algorithm can save sheets by 3.93%, 1.27% and 1.17% respectively.
 

基金项目:
河南省科技厅科技攻关项目(152102210320);河南省高等学校重点科研项目(15B52000)
作者简介:
胡钢(1982-),男,学士,讲师 潘立武(1971-),男,博士,副教授
参考文献:


[1]Wscher G, Hauner H, Schumann H. An improved typology of cutting and packing problems[J]. European Journal of Operational Research, 2007, 183(3):1109-1130.



[2]Lodi A, Martello S, Vigo D. Models and bounds for twodimensional level packing problems[J]. Journal of Combinatorial Optimization, 2004, 8(3):363-379.



[3]Clautiaux F, Jouglet A, Hayek J E. A new lower bound for the nonoriented twodimensional binpacking problem [J]. Operations Research Letters, 2007, 35(3):365-373.



[4]Polyakovsky S, M’Hallah R. An agentbased approach to the twodimensional guillotine bin packing problem[J]. European Journal of Operational Research, 2009, 192(3):767-781.



[5]Monaci M, Toth P. A setcoveringbased heuristic approach for binpacking problems[J]. Informs Journal on Computing, 2006, 18(1): 71-85.



[6]Chan T M, Alvelos F, Silva E, et al. Heuristics with stochastic neighborhood structures for twodimensional bin packing and cutting stock problems[J]. AsiaPacific Journal of Operational Research, 2011, 28(2): 255-278.



[7]Mack D, Bortfeldt A. A heuristic for solving large bin packing problems in two and three dimensions[J]. Central European Journal of Operations Research, 2012, 20(2):337-354.



[8]Charalambous C, Fleszar K. A constructive binoriented heuristic for the twodimensional bin packing problem with guillotine cuts[J]. Computers & Operations Research, 2011, 38(10): 1443-1451.



[9]Fleszar K. Three insertion heuristics and a justification improvement heuristic for twodimensional bin packing with guillotine cuts[J]. Computers & Operations Research, 2013, 40(1):463-474.



[10]朱强, 薛峰, 郑仕勇, 等. 约束二维排样问题的一种求解算法[J]. 锻压技术, 2016, 41(9): 148-152.


Zhu Q, Xue F, Zheng S Y, et al. An algorithm of the constrained twodimensional nesting[J]. Forging & Stamping Technology, 2016, 41(9): 148-152.



[11]Kellerer H,Pferschy U,Pisinger D. Knapsack Problems[M]. Berlin: Springer,2004.



[12]Berkey J O, Wang P Y. Twodimensional finite binpacking algorithms[J]. Journal of the Operational Research Society, 1987, 38(5): 423-429.



[13]Lodi A, Martello S, Vigo D. Heuristic and metaheuristic approaches for a class of twodimensional bin packing problems[J]. Informs Journal on Computing, 1999, 11(4): 345-357.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9