[1]曹传剑,曹爱霞,宋慧,等. 基于变压边力的汽车翼子板成形[J]. 锻压技术,2016,41(10):149-151.
Cao C J, Cao A X, Song H, et al. Automobile fender forming based on variable blank holder force[J]. Forging & Stamping Technology, 2016, 41(10): 149-151.
[2]王晖,卫瑞元,袁军涛,等. 基于变压边力的盒形件拉深研究[J].机械设计与制造,2010,(7): 95 -96.
Wang H, Wei R Y, Yuan J T, et al. The research of box-drawing based on variable blank-holder force[J]. Machinery Design & Manufacture, 2010, (7): 95 -96.
[3]罗昱,胡建华,陈昶,等,不同压边力加载模式对盒形件拉深成形的影响[J]. 锻压技术,2016,41(7):7-10.
Luo Y, Hu J H, Chen C, et al. Influence of different blank holder force loading modes on rectangular box drawing[J]. Forging & Stamping Technology, 2016, 41(7):7-10.
[4]饶进军,包忠诩,黄菊花. 人工神经网络技术及其在板料成形智能化中的应用[J]. 塑性工程学报,2002,9(1):17-21.
Rao J J, Bao Z Y, Huang J H. Artificial neural networks technology and its applications for intelligentization of sheet metal forming[J]. Journal of Plasticity Engineering, 2002, 9(1):17-21.
[5]郭斌,孟令启,杜勇,等. 基于GRNN神经网络的中厚板轧机厚度预测[J]. 中南大学学报:自然科学版,2011,42(4):960-965.
Guo B, Meng L Q, Du Y, et al. Thickness prediction of medium plate mill based on GRNN neural network[J]. Journal of Central South University: Science and Technology, 2011, 42(4):960-965.
[6]智会强,牛坤,田亮,等. BP网络和RBF网络在函数逼近领域内的比较研究[J]. 科技通报,2005, 21(2):193-197.
Zhi H Q, Niu K, Tian L, et al. A comparative study on BP network and RBF network in function approximation[J]. Bulletin of Science and Technology, 2005, 21(2):193-197.
[7]何灿焜. 基于人工神经网络的压边力预测技术研究[J]. 锻压装备与制造技术,2006,41(5):86-89.
He C K. Study on blank holding force forecast based on artificial neural network [J]. China Metalforming Equipment & Manufacturing Technology,2006,41(5):86-89.
[8]李奇涵,王红强,刘海静,等. 基于BP神经网络矩形盒件拉深成形变压边力的预测[J]. 锻压技术,2015,40(11):27-31.
Li Q H, Wang H Q, Liu H J, et al. Prediction of variable blank-holder force of rectangular box in deep drawing forming based on BP-neural network[J]. Forging & Stamping Technology, 2015, 40(11): 27-31.
[9]陈炜,周宏超,徐雪来,等. 盒形件变压边力拉深成形研究[J]. 锻压技术,2014,39(11):20-24.
Chen W, Zhou H C, Xu X L, et al. Research on variable blank holder force deep drawing for rectangular box parts[J]. Forging & Stamping Technology, 2014, 39(11):20-24.
[10]李琳,陈忠家,李奇,等. 盒形件分区变压边力拉深研究[J]. 锻压技术, 2016,41(2):25-29.
Li L, Chen Z J, Li Q, et al. Research on box-drawing based on variable blank-holder force[J]. Forging & Stamping Technology, 2016, 41(2):25-29.
[11]张晓斌,孙宇,代珊. 基于径向基神经网络杯形件拉深成形变压边力预测技术研究[J]. 机械设计,2007,24(8):36-38.
Zhang X B, Sun Y, Dai S. Study on the prediction technology of variable blank-holding force for deep drawing forming of cup shaped parts based on radial basis neural network[J]. Mechanical Design, 2007,24(8):36-38.
[12]田银. 基于RBF神经网络的变压边力优化研究[D]. 成都:西南交通大学,2015.
Tian Y. Research on the Optimization of Variable Blank Holder Force Based on RBF Neural Network[D]. Chengdu: Southwest Jiaotong University, 2015.
[13]Kamali K. Application of a hybrid GA-BP optimized neural network for springback estimation in sheet metal forming process[A]. Joint Congress on Fuzzy and Intelligent Systems[C]. Iran, 2007.
[14]Zcan B, Alpaslan. Artificial neural networks for the cost estimation of stamping dies[J]. Neural Computing and Applications, 2014, 25(3):717-726.
[15]赵军,马瑞,王凤琴,等. 盒形件拉深智能化控制关键技术研究[J]. 塑性工程学报,2005,12(3):67-70.
Zhao J, Ma R, Wang F Q, et al. Study on the key technologies of intelligent control for rectangular box deep drawing[J]. Journal of Plasticity Engineering, 2005, 12(3):67-70.
|