网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
材料性能波动下高强TA18钛管绕弯过程截面畸变行为分析
英文标题:Analysis on cross section deformation behaviors of high strength titanium tube TA18 in rotary draw bending process with material property variations
作者:方军 梁闯 鲁世强 王克鲁 闵旭光  胡丽丽 
单位:江西科技师范大学 南昌航空大学 
关键词:高强TA18钛管 材料性能参数 截面畸变 数控绕弯 有限元分析 
分类号:TG386
出版年,卷(期):页码:2017,42(7):158-163
摘要:

为了研究材料性能参数对管材数控绕弯过程截面畸变的影响规律及敏感性大小,基于ABAQUS非线性有限元平台,建立了高强TA18钛管数控绕弯成形过程有限元模型,并通过文献中的实验结果验证了模型的可靠性,然后采用该模型模拟研究了材料性能波动下高强TA18钛管数控绕弯成形过程的截面畸变行为。结果表明:截面畸变率随着弹性模量、硬化指数的增加或强度系数、厚向异性指数的减小而减小,其减小率分别为11.76%,23.67%,12.07%和23.51%;不同材料性能参数波动下,高强TA18钛管绕弯过程截面畸变率的最大值均小于4.00%,并且在弯曲平面附近,截面畸变率出现负值;截面畸变率对材料性能参数的敏感性大小依次为强度系数、弹性模量、硬化指数和厚向异性指数。

In order to study the influence rule and sensitivities of material property parameters on cross section deformation of tube in numerical control (NC) rotary draw bending process, a finite element (FE) model of high strength titanium tube TA18 in NC rotary draw bending process was established by ABAQUS software, and its reliability was validated by experiment results in literature. Then, the cross section deformation behaviors of high strength titanium tube TA18 in NC rotary draw bending process were numerically studied by the model under material property variations. The results show that the cross section deformation ratio decreases with the increasing of elastic modulus and hardening exponent or with the decreasing of strength coefficient and normal anisotropy exponent, and the decrease rates are 11.76%,23.67%,12.07% and 23.51% respectively. The maximum value of cross section deformation ratio is less than 4.00% under different material property variations, and the cross section deformation ratio shows a negative value near the bending plane. Furthermore, the sensitivities of cross section deformation ratio to material property parameters from high to low are strength coefficient, elastic modulus, hardening exponent and normal anisotropy exponent.

基金项目:
江西省教育厅科学技术研究项目(GJJ150810);轻合金加工科学与技术国防重点学科实验室开放课题研究基金项目(gf201501001);江西科技师范大学博士科研启动基金项目(BSJJ2015015)
作者简介:
作者简介:方军(1984-),男,博士,讲师,E-mail:fangjun020j13@163.com;通讯作者:鲁世强(1962-),男,博士,教授,博士生导师,E-mail:niatlusq@126.com
参考文献:

[1]Yang H, Li H, Zhang Z Y, et al. Advances and trends on tube bending forming technologies[J]. Chinese Journal of Aeronautics, 2012, 25(1):1-12.


[2]方军. 21-6-9高强不锈钢管数控绕弯成形规律研究[D].南京:南京航空航天大学,2015.


Fang J. Study on Forming Rules of 21-6-9 High-strength Stainless Steel Tubes in NC Rotary Draw Bending Process[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.


[3]李恒, 杨合, 宋飞飞, . 材料性能波动下TA18钛管绕弯回弹行为[J]. 稀有金属材料与工程, 2014, 43(1):64-71.


Li H, Yang H, Song F F, et al. Springback rules of TA18 titanium tube upon rotary draw bending under variations of material properties[J]. Rare Metal Materials and Engineering, 2014, 43(1):64-71.


[4]Veerappan A R, Shanmugam S. Analysis for flexibility in the ovality and thinning limits of pipe bends[J]. Journal of Engineering and Applied Science, 2008, 3(1):31-41.


[5]Jia M H, Tang C T, Liu J H. Analysis and experiment of cross-section flattening in coreless tube bending[J]. Journal of Beijing Institute of Technology, 2014, 23(1):37-41.


[6]Lu S Q, Fang J, Wang K L. Plastic deformation analysis and forming quality prediction of tube NC bending[J]. Chinese Journal of Aeronautics, 2016, 29(5):1436-1444.


[7] Li C, Yang H, Zhan M, et al. Effects of process parameters on numerical control bending process for large diameter thin-walled aluminum alloy tubes[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3): 668-673.


[8] Liu K X, Liu Y L, Yang H, et al. Experimental study on cross-section distortion of thin-walled rectangular 3A21 aluminium alloy tube by rotary draw bending[J]. International Journal of Materials and Product Technology, 2011, 42(1-2):110-120.


[9]方军, 鲁世强, 王克鲁, . 0Cr21Ni6Mn9N 不锈钢管材数控弯曲截面畸变有限元分析[J]. 塑性工程学报, 2013, 20(5):71-76.


Fang J, Lu S Q, Wang K L, et al. FE analysis of section distortion in numerical control bending of the 0Cr21Ni6Mn9N stainless steel tube[J]. Journal of Plasticity Engineering, 2013, 20(5):71-76.


[10]Fang J, Lu S Q, Wang K L, et al. Deformation behaviors of 21-6-9 stainless steel tube numerical control bending under different friction conditions [J]. Journal of Central South University, 2015, 22(8):2864-2874.


[11]方军, 鲁世强, 王克鲁, . 管模间隙对21-6-9高强不锈钢管数控绕弯成形质量的影响[J]. 北京理工大学学报, 2015, 35(9):886-891.


Fang J, Lu S Q, Wang K L, et al. Effect of clearance between tube and dies on forming quality in NC bending process of high strength 21-6-9 stainless steel tube[J]. Transactions of Beijing Institute of Technology, 2015, 35(9):886-891.


[12]陈钱, 雷君相. 芯模参数对高强度薄壁管数控弯曲成形质量的影响[J]. 锻压技术, 2016, 41(11):158-163.


Chen Q, Lei J X. Influence of mandrel parameters on NC bending forming quality for high strength thin-wall tube[J]. Forging & Stamping Technology, 2016, 41(11):158-163.


[13]Li H, Yang H, Zhan M, et al. Numeircal study on defomation behaviors of thin-walled tube NC bending with large diameter and small bending radius[J]. Computational Materials Science, 2009,45(4):921-934.


[14]Zhao G Y, Liu Y L, Yang H, et al. Cross-section distortion behaviors of thin-walled rectangular tube in rotary-draw bending process[J]. Transactions of Nonferrous Metals Society of China, 2010,20(3):484-489.


[15]Zhan M, Jiang Z Q, Yang H, et al. Numerically controlled bending performance of medium strength TA18 titanium alloy tubes under different die sets[J]. Science China Technological Sciences, 2011, 54(4):841-852.


[16]Fang J, Lu S Q, Wang K L, et al. Three-dimensional finite element model of high strength 21-6-9 stainless steel tube in rotary draw bending and its application[J]. Indian Journal of Engineering and Materials Sciences, 2015, 22(2):142-151.


[17]Song F F, Yang H, Li H, et al. Springback prediction of thick-walled high-strength titanium tube bending [J]. Chinese Journal of Aeronautics, 2013,26(5):1336-1345.


[18]张津, 刘郁丽, 赵刚要, . 材料参数对矩形管绕弯截面畸变的影响[J]. 热加工工艺, 2009,38(13):1-4,7.


Zhang J, Liu Y L, Zhao G Y, et al. Influence of material parameters on rectangular tube cross section deformation in rotary-draw bending process[J]. Hot Working Technology, 2009,38(13):1-4,7.


[19]HB 4-55—2002, 导管弯曲半径[S].


HB 4-55—2002, Pipe bending radius [S].


[20]方军, 鲁世强, 王克鲁, . 21-6-9高强不锈钢管数控弯曲回弹对材料参数的敏感性[J]. 西安交通大学学报, 2015, 49(3):136-142.


Fang J, Lu S Q, Wang K L, et al. Sensitivity analysis of springback to material parameters in high strength 21-6-9 stainless steel tube NC bending[J]. Journal of Xi′an Jiaotong University, 2015, 49(3):136-142.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9