网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于应变路径的复杂汽车结构件多工位级进模精确刃口线优化
英文标题:Optimization on accurate cutting line of multi-station progressive die for complicated automotive structure parts based on strain path
作者:李贵 周敏 陈志平 熊禾根 谭升洪 
单位:武汉科技大学 广东科龙模具有限公司 
关键词:复杂汽车结构件 多工位级进模  刃口线优化  应变路径  数值模拟 
分类号:TG386
出版年,卷(期):页码:2017,42(8):115-121
摘要:

复杂汽车结构件多工位级进模具有工位多、结构复杂、工位关联性强的特点,其冲裁工位刃口线受成形工位的影响,刃口线的预测精度低。基于此,提出一种基于应变路径的精确刃口线优化方法。采用有限元逆算法对零件分步展开,获得板料的初始轮廓线;基于真实压力机参数、精细化模面和真实工艺参数,对条料进行全工序精细化数值模拟。将板料初始网格的边界节点基于B样曲线拟合,提取成形前后边界节点的应变及其路径。以设计零件的产品边界为目标,建立精确刃口线优化的目标函数,通过调整B样条曲线,对轮廓线进行迭代优化。实例表明,该优化方法可有效提高复杂多工位级进模刃口线优化的精度和效率。

The complex multi-station progressive die of complicated automotive parts has many characteristics of many stations, complicated structure and strong correlation between stations. However, the cutting line is affected by the forming stations, and the predict accuracy of the cutting line is very low. Therefore, a new optimization method of cutting line was proposed based on the strain path of material, and the part was unfolded step by step by inverse algorithm of finite element method to obtain the initial blank outline. Then, the refined numerical simulation of whole process was carried out based on the real parameters of press, refined die surface and real process parameters. The boundary nodes of the initial mesh of blank were fitted according to the B-spline curve, and then the strain value and the path of boundary nodes were extracted based on the simulation before and after forming. Furthermore, the optimization objective function of the cutting line was established by taking the boundary of the design part as the target, and the iterative optimization of the cutting line was made by adjusting the B-spline curve. The results show that the proposed method can effectively improve the accuracy and efficiency of the optimization of the cutting line for the complex multi-station progressive die.

基金项目:
国家自然科学基金资助项目(51505348);武汉科技大学冶金装备及其控制教育部重点实验室开放基金资助项目(2015B08)
作者简介:
李贵(1983-), 男,博士,讲师
参考文献:


[1]魏钰恬, 何海飞, 夏建生,等. 基于NX软件的典型零件级进模设计[J]. 数字技术与应用, 2015,(11):187-188.Wei Y T, He H F, Xia J S, et al. Progressive die design of typical parts based on software [J]. Digital Technology and Application, 2015,(11):187-188.
[2]周立奎, 夏琴香, 陈志平,等. 某汽车尾箱支架多工位级进模设计[J]. 锻压技术, 2016, 41(1):106-110.Zhou L K, Xia Q X, Chen Z P, et al. Design of multi-position progressive die for car rear bracket [J]. Forging & Stamping Technology, 2016, 41(1):106-110.
[3]钟江静, 梁士红. 接线片塑性成形多工位级进模设计[J]. 锻压技术, 2016, 41(9):100-105.Zhong J J, Liang S H. Design of multi-position progressive die for the wiring patch in plastic forming[J]. Forging & Stamping Technology, 2016,41(9):100-105.
[4]贾林玲. 微型电机风扇叶片多工位级进模设计[J]. 锻压技术, 2017, 42(5):99-101.Jia L L. Design on multi-position progressive die of micro motor fan blade[J]. Forging & Stamping Technology, 2017, 42(5):99-101.
[5]Azamirad G, Arezoo B. Structural design of stamping die components using bi-directional evolutionary structural optimization method [J]. International Journal of Advanced Manufacturing Technology, 2016, 87(1-4):969-979.
[6]Lin B T, Huang K M, Su K Y, et al. Development of an automated structural design system for progressive dies [J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5):1887-1899.
[7]刘维, 吴建军. 基于理想成形理论的多工步板料成形有限元分析[J]. 机械工程学报, 2011, 47(14): 20-25.Liu W, Wu J J. Finite element analysis of multi-step sheet metal forming based on ideal forming theory[J]. Journal of Mechanical Engineering, 2011, 47(14): 20-25.
[8]Hussein H M A, Kumar S, Nasr E S A. Computer-aided design and simulation of strip layout for progressive die planning using petri nets[J]. Advances in Mechanical Engineering, 2016, 8(4):1-9.
[9]龙玲, 刘培勇, 王青春,等. 多工位级进模冲压工艺优化设计技术研究[J]. 成都航空职业技术学院学报, 2016, 32(2):46-48.Long L, Liu P Y, Wang Q C, et al. Research on optimization design technology of stamping process of multi-position progressive die [J]. Journal of Chengdu Aeronautic Vocational & Technical College, 2016, 32(2): 46-48.
[10]夏琴香, 魏光明, 叶福源, 等. 多工位级进冲压全工序数值模拟关键技术研究[J]. 华南理工大学学报:自然科学版, 2012, 40(7): 62-66.Xia Q X, Wei G M, Ye F Y, et al. Investigation into key technologies of numerical simulation of whole process chain during multi-position progressive stamping [J]. Journal of South China University of Technology: Natural Science Edition, 2012, 40(7): 62-66.
[11]Bao Y, Cui J, Lin Z, et al. Trimming line development method of auto panel part with undercutting flange[J]. Finite Elements in Analysis & Design, 2015, 102:29-36.
[12]Zhang Z B, Liu Y Q, Du T, et al. Blank design and formability prediction of complicated progressive die stamping part using a multi-step unfolding method[J]. Journal of Materials Processing Technology, 2008, 205(1-3): 425-431.
[13]Xu H J, Liu Y Q, Zhang Z B, et al. Solid-shell finite element method for progressive die forming simulation [J]. Steel Research International, 2010, 81(9):721-724.
[14]许恒建, 柳玉起, 金伟. 基于中间构形的级进模条料分步展开算法研究[J]. 锻压技术, 2012, 37(2): 43-47.Xu H J, Liu Y Q, Jin W. Research on multi-step unfolding algorithm of progressive die strip based on intermediate shapes [J]. Forging & Stamping Technology, 2012, 37(2): 43-47.
[15]聂昕, 成艾国, 申丹风.汽车结构件级进模的料带优化设计[J].中国机械工程, 2010, 22(6):723-727.Nie X, Cheng A G, Shen D F. Optimization design of blank sheet in body panel progressive stamping[J]. China Mechanical Engineering, 2010, 22(6): 723-727.
[16]Landkammer P, Germain S, Steinmann P. Optimum blank design by using the FEM based on inverse motion in orthotropic elasto-plasticity[J]. Pamm, 2015, 14(1):353-354.
[17]Landkammer P, Steinmann P. A fast approach to shape optimization using the inverse FEM [J]. Key Engineering Materials, 2014, 611-612:1404-1410.
[18]崔静, 鲍益东. 一步逆成形法中边界等效阻力的自适应算法[J]. 机械工程学报, 2016, 52(9):122-128.Cui J, Bao Y D. Self-adaptive algorithm of the equivalent resistance on the boundary line in one-step inverse analysis [J]. Journal of Mechanical Engineering, 2016, 52(9):122-128.
[19]范泽, 张润辉, 昝祥.不同冲压速度对板料成形的影响[J]. 锻造与冲压, 2015,(10):39-42.Fan Z, Zhang R H, Zan X. Influence of different stamping speed on sheet metal forming[J]. Forging & Metalforming, 2015,(10):39-42.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9